Redefining Geometric Periodicity to Enable New Wave Responses in Radial Phononic Materials
重新定义几何周期性以实现径向声子材料中的新波响应
基本信息
- 批准号:2031110
- 负责人:
- 金额:$ 35.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant will support fundamental research to model and characterize new structures that can passively control radially-propagating vibrations. Vibrations plague machinery, turbine blades, gear trains, and reciprocating mechanisms. They are particularly problematic when propagating radially through these components, and can cause severe damage and rapid wear of structural components. This work aims to engineer the vibration mitigating properties directly into the geometry of such components. While existing materials can passively mitigate vibrations, these behaviors are unattainable for radially-propagating waves. Results of this research have applications in improving safety, efficiency, and longevity of structures in aircraft, automotive, and energy infrastructure, which remains as one of society's pressing needs. This research will positively impact education through K-12 outreach activities and new laboratory-based learning modules in both undergraduate and graduate courses.This grant will introduce new mathematical models, computational models, and experiments for radially-propagating waves. The specific objectives of this work are to introduce a modeling and experimental framework to characterize radial metastructures that passively mitigate damaging radial vibrations. Existing phononic materials are promising candidates for vibration mitigation, since they can forbid certain frequencies from propagating through the material. However, these beneficial phononic properties are unattainable for radially propagating waves. This is because analysis methods for phononic materials, e.g., Bloch theorem, are not applicable to radially propagating waves, since periodically varying material properties do not lead to periodic coefficients in the wave equation in radial coordinates. The work will address these challenges by introducing (1) new architected materials with radially dependent properties that will enable modifications of the equations of motion to enforce periodicity mathematically; and (2) a modeling framework for radial metastructures with effective periodicity. Specifically, this work will introduce a new modeling framework that redefines parameters in the wave equation to be radially dependent in order to achieve periodic coefficients, and thus enable Bloch analysis. The models of radial elastic wave propagation in anisotropic layered media will be validated by finite element simulations and verified by experiments. This work will result in new anisotropic structures that exhibit phononic behaviors in the absence of geometric periodicity, and lays the foundation to explore interactions between material dispersion and source geometry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该补助金将支持基础研究,以建模和表征可以被动控制径向传播振动的新结构。振动困扰着机械、涡轮机叶片、齿轮系和往复机构。它们在径向传播通过这些部件时特别成问题,并且可能导致结构部件的严重损坏和快速磨损。这项工作的目的是工程师的减振性能直接到这些组件的几何形状。虽然现有的材料可以被动地减轻振动,但这些行为对于径向传播的波是无法实现的。这项研究的结果可用于提高飞机、汽车和能源基础设施结构的安全性、效率和寿命,这仍然是社会的迫切需求之一。这项研究将通过K-12外展活动和新的实验室学习模块在本科和研究生课程产生积极的影响教育。这笔赠款将引入新的数学模型,计算模型和实验的径向传播波。这项工作的具体目标是引入一个建模和实验框架来表征被动地减轻破坏性径向振动的径向元结构。 现有的声子材料是振动缓解的有希望的候选者,因为它们可以禁止某些频率通过材料传播。然而,这些有益的声子性质对于径向传播的波是无法实现的。这是因为声子材料的分析方法,例如,Bloch定理不适用于径向传播的波,因为周期性变化的材料性质不会导致径向坐标中的波动方程中的周期性系数。这项工作将通过引入(1)具有径向相关特性的新结构材料来解决这些挑战,这些材料将使运动方程的修改能够在数学上加强周期性;以及(2)具有有效周期性的径向亚结构的建模框架。具体来说,这项工作将引入一个新的建模框架,重新定义的波动方程中的参数是径向依赖的,以实现周期性的系数,从而使布洛赫分析。各向异性层状介质中径向弹性波传播的模型将通过有限元模拟和实验验证。这项工作将产生新的各向异性结构,在没有几何周期性的情况下表现出声子行为,并为探索材料色散和源几何形状之间的相互作用奠定基础。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effective phononic crystals for non-Cartesian elastic wave propagation
- DOI:10.1103/physrevb.102.134308
- 发表时间:2020-08
- 期刊:
- 影响因子:3.7
- 作者:Ignacio Arretche;K. Matlack
- 通讯作者:Ignacio Arretche;K. Matlack
Centrifugal forces enable band gaps that self-adapt to synchronous vibrations in rotating elastic metamaterial
- DOI:10.1016/j.ymssp.2023.110689
- 发表时间:2023-08-20
- 期刊:
- 影响因子:8.4
- 作者:Arretche,Ignacio;Matlack,Kathryn H.
- 通讯作者:Matlack,Kathryn H.
Locally Resonant Effective Phononic Crystals for Subwavelength Vibration Control of Torsional Cylindrical Waves
用于扭转柱面波亚波长振动控制的局部谐振有效声子晶体
- DOI:10.1115/1.4052748
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Arretche, Ignacio;Matlack, Kathryn H.
- 通讯作者:Matlack, Kathryn H.
Physical realization and experimental validation of effective phononic crystals for control of radial torsional waves
- DOI:10.1016/j.jsv.2022.117305
- 发表时间:2022-09-19
- 期刊:
- 影响因子:4.7
- 作者:Arretche, Ignacio;Matlack, Kathryn H.
- 通讯作者:Matlack, Kathryn H.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kathryn Matlack其他文献
Kathryn Matlack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kathryn Matlack', 18)}}的其他基金
CAREER: Controlling Nonlinear Wave Propagation in Metastructures with Contact Interfaces
职业:通过接触界面控制超结构中的非线性波传播
- 批准号:
2047041 - 财政年份:2021
- 资助金额:
$ 35.04万 - 项目类别:
Standard Grant
Correlating Nonlinear Wave Response with Mesoscale Dislocation-Based Damage to Understand Fatigue Evolution
将非线性波响应与中尺度位错损伤相关联以了解疲劳演化
- 批准号:
2015599 - 财政年份:2020
- 资助金额:
$ 35.04万 - 项目类别:
Standard Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 35.04万 - 项目类别:
Standard Grant
Conference: Southern California Geometric Analysis Seminar
会议:南加州几何分析研讨会
- 批准号:
2406732 - 财政年份:2024
- 资助金额:
$ 35.04万 - 项目类别:
Standard Grant
CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
- 批准号:
2339898 - 财政年份:2024
- 资助金额:
$ 35.04万 - 项目类别:
Continuing Grant
OAC Core: OAC Core Projects: GPU Geometric Data Processing
OAC 核心:OAC 核心项目:GPU 几何数据处理
- 批准号:
2403239 - 财政年份:2024
- 资助金额:
$ 35.04万 - 项目类别:
Standard Grant
Conference: Geometric and Asymptotic Group Theory with Applications 2024
会议:几何和渐近群理论及其应用 2024
- 批准号:
2403833 - 财政年份:2024
- 资助金额:
$ 35.04万 - 项目类别:
Standard Grant
Conference: Young Geometric Group Theory XII
会议:年轻几何群理论XII
- 批准号:
2404322 - 财政年份:2024
- 资助金额:
$ 35.04万 - 项目类别:
Standard Grant
CAREER: Isoperimetric and Minkowski Problems in Convex Geometric Analysis
职业:凸几何分析中的等周和闵可夫斯基问题
- 批准号:
2337630 - 财政年份:2024
- 资助金额:
$ 35.04万 - 项目类别:
Continuing Grant
Conference: Riverside Workshop on Geometric Group Theory 2024
会议:2024 年河滨几何群论研讨会
- 批准号:
2342119 - 财政年份:2024
- 资助金额:
$ 35.04万 - 项目类别:
Standard Grant
Conference: Frontiers of Geometric Analysis
会议:几何分析前沿
- 批准号:
2347894 - 财政年份:2024
- 资助金额:
$ 35.04万 - 项目类别:
Standard Grant
Conference: Geometric Flows and Relativity
会议:几何流和相对论
- 批准号:
2348273 - 财政年份:2024
- 资助金额:
$ 35.04万 - 项目类别:
Standard Grant