Hydro-ML: Symposium on Big Data Machine Learning in Hydrology and Water Resources; Pennsylvania, May 25-29, 2020

Hydro-ML:水文水资源大数据机器学习研讨会;

基本信息

  • 批准号:
    2015680
  • 负责人:
  • 金额:
    $ 4.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-03-15 至 2023-02-28
  • 项目状态:
    已结题

项目摘要

Artificial intelligence has the potential to impact every facet of our society. Machine learning, an important component of artificial intelligence, is revolutionizing much of what we do today. Deep learning is a relatively new subset of machine learning that has tremendous potential to improve our capabilities for industrial applications and scientific discovery. The use of artificial intelligence in hydrology, and deep learning in particular, can bring tremendous benefits to society. Hydrologic academics and professionals, however, have not historically taken advantage of artificial intelligence. While there have been some workshops and gathering opportunities for hydrologists interested in deep learning, there have been no dedicated workshops to build a community that can leverage common datasets, methods, and goals. A Machine Learning in Water Workshop (“Hydro-ML”) is proposed to demystify artificial intelligence for a wider audience in hydrology, build dedicated expertise and collaborative potential through training sessions and hackathons. Building a hydrological machine learning community will enable sharing of resources, organization of competitions stimulating an expansion of the field, and encourage collaboration among academics and professionals to solve large challenges. Special attention will be paid to participants' diversity both in terms of gender and race, which has previously been identified as an issue in artificial intelligence and hydrology. The topics covered by the symposium will be defined through solicitations to the community at large, with the intention of stimulating broader impacts in the hydrologic community. The Hydro-ML symposium will build a collaborative community focusing on machine learning in hydrology. It will consist of four types of sessions: research presentations, breakout discussion forums, deep learning tutorials and hackathons, and community-building activities. Specific sessions will discuss forward-looking, overarching questions that will be solicited from the participants prior to the meeting. These symposium activities will provide the foundation to build collective efforts in novel dataset identification, preparations for machine learning-in-hydrology competitions, and discussion of physically-informed machine learning. The symposium will be widely advertised through diverse channels, including hydrology newsletters and mailing lists, targeted communications to underrepresented, non-profit, and industry groups, and publications aimed at the general public. The organizing committee will encourage participation from diverse and underrepresented communities, and welcome those who are new to artificial intelligence. The outcomes from the symposium include collective publications serving as positional statements by the community (including journal papers and white papers), detailed plans for hydrologic machine learning competitions, and technical deep learning tutorials for audience with varied deep learning experience, ranging from newcomers to intermediate users. The symposium’s events will be aimed at building a diverse community that enables advancements in hydrology which will benefit society.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能有可能影响我们社会的方方面面。机器学习是人工智能的重要组成部分,正在彻底改变我们今天所做的许多事情。深度学习是机器学习的一个相对较新的子集,具有巨大的潜力来提高我们的工业应用和科学发现的能力。在水文学中使用人工智能,特别是深度学习,可以为社会带来巨大的利益。然而,水文学者和专业人士在历史上并没有利用人工智能。虽然已经为对深度学习感兴趣的水文学家举办了一些研讨会和聚会机会,但还没有专门的研讨会来建立一个可以利用通用数据集、方法和目标的社区。水资源机器学习研讨会(“Hydro-ML”)旨在为水文学领域的更广泛受众揭开人工智能的神秘面纱,通过培训课程和黑客马拉松建立专门的专业知识和合作潜力。建立一个水文机器学习社区将能够共享资源,组织竞赛,刺激该领域的扩展,并鼓励学者和专业人士之间的合作,以解决重大挑战。将特别关注参与者在性别和种族方面的多样性,这在以前被认为是人工智能和水文学的一个问题。专题讨论会所涵盖的主题将通过向整个社区征求意见来确定,目的是在水文界产生更广泛的影响。Hydro-ML研讨会将建立一个专注于水文学机器学习的协作社区。它将包括四种类型的会议:研究演示,分组讨论论坛,深度学习教程和黑客松,以及社区建设活动。具体的会议将讨论前瞻性的、总体性的问题,这些问题将在会前向与会者征求意见。 这些研讨会活动将为在新的数据集识别、水文学机器学习竞赛的准备以及物理信息机器学习的讨论方面建立集体努力提供基础。将通过各种渠道广泛宣传专题讨论会,包括水文通讯和邮寄名单,针对代表性不足的非营利和行业团体的有针对性的通信,以及针对公众的出版物。组委会将鼓励来自多元化和代表性不足的社区的参与,并欢迎那些新的人工智能。研讨会的成果包括作为社区立场声明的集体出版物(包括期刊论文和白色论文),水文机器学习竞赛的详细计划,以及针对具有不同深度学习经验的观众(从新手到中级用户)的技术深度学习教程。该研讨会的活动旨在建立一个多元化的社区,促进水文学的进步,造福社会。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Differentiable modelling to unify machine learning and physical models for geosciences
  • DOI:
    10.1038/s43017-023-00450-9
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    42.1
  • 作者:
    Chaopeng Shen;A. Appling;P. Gentine;Toshiyuki Bandai;H. Gupta;A. Tartakovsky;M. Baity-Jesi;F. Fenicia;Daniel Kifer;Li Li-Li;Xiaofeng Liu;Wei Ren;Y. Zheng;C. Harman;M. Clark;M. Farthing;D. Feng;Praveen Kumar;Doaa Aboelyazeed;F. Rahmani;Yalan Song;H. Beck;Tadd Bindas;D. Dwivedi;K. Fang;Marvin Höge;Christopher Rackauckas;B. Mohanty;Tirthankar Roy;Chonggang Xu;K. Lawson
  • 通讯作者:
    Chaopeng Shen;A. Appling;P. Gentine;Toshiyuki Bandai;H. Gupta;A. Tartakovsky;M. Baity-Jesi;F. Fenicia;Daniel Kifer;Li Li-Li;Xiaofeng Liu;Wei Ren;Y. Zheng;C. Harman;M. Clark;M. Farthing;D. Feng;Praveen Kumar;Doaa Aboelyazeed;F. Rahmani;Yalan Song;H. Beck;Tadd Bindas;D. Dwivedi;K. Fang;Marvin Höge;Christopher Rackauckas;B. Mohanty;Tirthankar Roy;Chonggang Xu;K. Lawson
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chaopeng Shen其他文献

Accurate and efficient prediction of fine‐resolution hydrologic and carbon dynamic simulations from coarse‐resolution models
通过粗分辨率模型对精细分辨率逻辑和碳动态模拟进行准确高效的水文预测
  • DOI:
    10.1002/2015wr017782
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    G. Pau;Chaopeng Shen;W. Riley;Yaning Liu
  • 通讯作者:
    Yaning Liu
A deep learning-based novel approach to generate continuous daily stream nitrate concentration for nitrate data-sparse watersheds
一种基于深度学习的新颖方法,用于为硝酸盐数据稀疏流域生成连续的每日流量硝酸盐浓度
  • DOI:
    10.1016/j.scitotenv.2023.162930
  • 发表时间:
    2023-06-20
  • 期刊:
  • 影响因子:
    8.000
  • 作者:
    Gourab Kumer Saha;Farshid Rahmani;Chaopeng Shen;Li Li;Raj Cibin
  • 通讯作者:
    Raj Cibin
Temperature outweighs light and flow as the predominant driver of dissolved oxygen in US rivers
温度超过光和水流成为美国河流溶解氧的主要驱动因素
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei Zhi;Wenyu Ouyang;Chaopeng Shen;Li Li
  • 通讯作者:
    Li Li
Physics-guided deep learning for rainfall-runoff modeling by considering extreme events and monotonic relationships
通过考虑极端事件和单调关系来进行降雨径流建模的物理引导深度学习
  • DOI:
    10.1016/j.jhydrol.2021.127043
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Kang Xie;Pan Liu;Jianyun Zhang;Dongyang Han;Guoqing Wang;Chaopeng Shen
  • 通讯作者:
    Chaopeng Shen
Transferring hydrologic data across continents -- leveraging US data to improve hydrologic prediction in other countries
跨大陆传输水文数据——利用美国数据改进其他国家的水文预测
  • DOI:
    10.1002/essoar.10504132.1
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    K. Ma;D. Feng;K. Lawson;W. Tsai;Chuan Liang;Xiao;Ashutosh Sharma;Chaopeng Shen
  • 通讯作者:
    Chaopeng Shen

Chaopeng Shen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chaopeng Shen', 18)}}的其他基金

EAR-Climate: Towards Better Understanding of Global Low Flow Dynamics Under Climate Change With Next-Generation, Differentiable Global Hydrologic Models
EAR-Climate:利用下一代可微的全球水文模型更好地了解气候变化下的全球低流量动态
  • 批准号:
    2221880
  • 财政年份:
    2022
  • 资助金额:
    $ 4.87万
  • 项目类别:
    Standard Grant
Collaborative Research: Predictive Risk Investigation SysteM (PRISM) for Multi-layer Dynamic Interconnection Analysis
合作研究:用于多层动态互连分析的预测风险调查系统(PRISM)
  • 批准号:
    1940190
  • 财政年份:
    2019
  • 资助金额:
    $ 4.87万
  • 项目类别:
    Standard Grant
Examining groundwater-flood and soil moisture-flood relationships across scales using national-scale data mining, deep learning and knowledge distillation
使用国家规模的数据挖掘、深度学习和知识蒸馏来检查跨尺度的地下水-洪水和土壤水分-洪水关系
  • 批准号:
    1832294
  • 财政年份:
    2018
  • 资助金额:
    $ 4.87万
  • 项目类别:
    Continuing Grant

相似国自然基金

融合超声、双参数MRI及临床相关参数构建PSA 4~20ng/mL区段前列腺癌可视化预测模型的研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
“DFT+ML”协同探索原子精确金纳米团簇的类酶催化性质
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
机器学习力场EEM-ML的构建及离子液体基电解液离子状态和离子传输的研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0 万元
  • 项目类别:
    面上项目
表面增强拉曼光谱技术探究tRNA异戊烯基转移酶提高ML210 药效 的调控机制
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
ML-11调控斜纹夜蛾Toll信号途径抑制AcMNPV感染的分子机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
脂质识别蛋白ML调控褐飞虱若虫发育与雌虫生殖的分子机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
昆虫Toll-ML信号通路调控宿主抵抗杆状病毒侵染的分子机制
  • 批准号:
    U22A20488
  • 批准年份:
    2022
  • 资助金额:
    257.00 万元
  • 项目类别:
    联合基金项目
基于ML-MCTDH的多原子分子表面反应量子动力学算法开发和应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
水稻耐直播相关基因ML1的功能验证及作用机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
泛素特异性蛋白酶1抑制剂ML323对非小细胞肺癌免疫微环境的激活及对CD318 CAR-T细胞的增效作用研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

An innovative platform using ML/AI to analyse farm data and deliver insights to improve farm performance, increasing farm profitability by 5-10%
An%20innovative%20platform%20using%20ML/AI%20to%20analysis%20farm%20data%20and%20deliver%20insights%20to%20improv%20farm%20performance,%20increasing%20farm%20profitability%20by%205-10%
  • 批准号:
    10093235
  • 财政年份:
    2024
  • 资助金额:
    $ 4.87万
  • 项目类别:
    Collaborative R&D
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
  • 批准号:
    2331111
  • 财政年份:
    2024
  • 资助金额:
    $ 4.87万
  • 项目类别:
    Standard Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
  • 批准号:
    2904511
  • 财政年份:
    2024
  • 资助金额:
    $ 4.87万
  • 项目类别:
    Studentship
FMO/ML-Guided Drug Design: Accelerating Novel Inhibitor Development and Drug Discovery
FMO/ML 引导的药物设计:加速新型抑制剂的开发和药物发现
  • 批准号:
    24K20888
  • 财政年份:
    2024
  • 资助金额:
    $ 4.87万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
COMET: Communications Enabled, AI/ML based Digital Twins for Smart city Logistics and Last Mile applications
COMET:支持通信、基于 AI/ML 的数字孪生,用于智慧城市物流和最后一英里应用
  • 批准号:
    10099265
  • 财政年份:
    2024
  • 资助金额:
    $ 4.87万
  • 项目类别:
    Collaborative R&D
An innovative bedside light that uses AI/ML to track sleep, monitor the environment and suggest improvements to help those impacted by insomnia
创新的床头灯,使用人工智能/机器学习来跟踪睡眠、监测环境并提出改进建议以帮助那些受失眠影响的人
  • 批准号:
    10100216
  • 财政年份:
    2024
  • 资助金额:
    $ 4.87万
  • 项目类别:
    Collaborative R&D
ML assisted Film Post Production
机器学习辅助电影后期制作
  • 批准号:
    10087901
  • 财政年份:
    2024
  • 资助金额:
    $ 4.87万
  • 项目类别:
    Collaborative R&D
An innovative Lawtech AI/ML platform with human oversight that manages off-payroll worker status and periodically assesses the role status to ensure accuracy.
具有人工监督功能的创新 Lawtech AI/ML 平台,可管理工资外员工的状态并定期评估角色状态以确保准确性。
  • 批准号:
    10099483
  • 财政年份:
    2024
  • 资助金额:
    $ 4.87万
  • 项目类别:
    Collaborative R&D
OAC Core: Enhancing Network Security by Implementing an ML Malware Detection and Classification Scheme in P4 Programmable Data Planes and SmartNICs
OAC 核心:通过在 P4 可编程数据平面和智能网卡中实施 ML 恶意软件检测和分类方案来增强网络安全
  • 批准号:
    2403360
  • 财政年份:
    2024
  • 资助金额:
    $ 4.87万
  • 项目类别:
    Standard Grant
CSR: Small: Latency-controlled Reduction of Data Center Expenses for Handling Bursty ML Inference Requests
CSR:小:通过延迟控制减少数据中心处理突发 ML 推理请求的费用
  • 批准号:
    2336886
  • 财政年份:
    2024
  • 资助金额:
    $ 4.87万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了