EAR-Climate: Towards Better Understanding of Global Low Flow Dynamics Under Climate Change With Next-Generation, Differentiable Global Hydrologic Models

EAR-Climate:利用下一代可微的全球水文模型更好地了解气候变化下的全球低流量动态

基本信息

  • 批准号:
    2221880
  • 负责人:
  • 金额:
    $ 42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Freshwater resources are critically important to many competing human and ecosystem needs around the world. Global hydrologic models are needed to assess climate change impacts on water resources, but their accuracy is often limited. Model equations are sometimes arbitrary and we do not fully leverage the value of available data. In particular, traditional models have trouble describing low flow periods when rivers run dry, and sometimes predict trends that are opposite to observational records. These errors could lead to inadequate climate mitigation strategies, under-preparation for drought, or misallocation of disaster relief resources. Machine learning models tend to be accurate, but they remain challenging for humans to decipher, are not well suited to ask precise questions, and do not necessarily respect physical laws we know to be true such as the conservation of mass. This work will seek to build a new genre of hydrologic modeling currently termed differentiable modeling in hydrology¸ or, simply, differentiable hydrology. Not only will the next-generation global hydrologic models developed from this project improve our ability to estimate future low flows, but this work will also establish a new avenue in hydrology that combines the best aspects of machine learning and processes. The new avenue will provide the flexibly to ask new scientific questions and learn the answers from big data. As a result, hydrologists will no longer be limited by the generalist model design in artificial intelligence where interpretability is traded for model genericity. To achieve the project goals, the layers of artificial intelligence will be peeled off to harness one of its core technologies, namely, differentiable programming, to build learnable process-based models. Next-generation hydrologic models will evolve based on global hydrologic data, reduce structural deficiencies, build global parameterization schemes for groundwater, and address scale issues. The project will characterize errors attributable to structural deficiencies, improve reliability of predictions in data-sparse regions, and improve model physical significance. Outcomes will be disseminated to the climate change impact assessment community. Low flow predictions will also be shared through continuing collaboration with non-profit organizations with footprints in Africa. The research effort will be incorporated into educational activities for graduate students, symposium and workshop attendants, and high-schoolers via their teachers.This project is funded by the Hydrologic Sciences program, as well as a collaboration between the Directorate for Geosciences and Office of Advanced Cyberinfrastructure to support AI/ML and open science activities in the geosciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
淡水资源对世界各地许多相互竞争的人类和生态系统需求至关重要。评估气候变化对水资源的影响需要全球水文模型,但其准确性往往有限。模型方程有时是任意的,我们不能充分利用现有数据的价值。特别是,当河流干涸时,传统模型难以描述低流量时期,有时预测的趋势与观测记录相反。这些错误可能导致气候缓解战略不足、对干旱准备不足或救灾资源分配不当。机器学习模型往往是准确的,但它们对人类来说仍然具有挑战性,不适合提出精确的问题,也不一定遵守我们知道是正确的物理定律,比如质量守恒定律。这项工作将寻求建立一种新的水文建模类型,目前被称为水文学中的可微分建模,或者简单地说,可微分水文学。该项目开发的下一代全球水文模型不仅可以提高我们估计未来低流量的能力,而且还将在水文学领域建立一条新的途径,将机器学习和过程的最佳方面结合起来。新的途径将提供灵活的提出新的科学问题,并从大数据中学习答案。因此,水文学家将不再受到人工智能中通才模型设计的限制,在这种设计中,可解释性被模型的通用性所取代。为了实现项目目标,人工智能的层次将被剥离,以利用其核心技术之一,即可微分编程,来构建可学习的基于过程的模型。下一代水文模型将基于全球水文数据发展,减少结构性缺陷,建立全球地下水参数化方案,并解决规模问题。该项目将描述可归因于结构缺陷的错误,提高数据稀疏区域预测的可靠性,并提高模型的物理意义。结果将分发给气候变化影响评估界。低流量预测也将通过与在非洲有足迹的非营利组织的持续合作分享。研究成果将通过教师,融入到研究生、研讨会和研讨会参加者、高中生的教育活动中。该项目由水文科学计划以及地球科学理事会和先进网络基础设施办公室之间的合作资助,以支持地球科学领域的人工智能/机器学习和开放科学活动。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Differentiable modelling to unify machine learning and physical models for geosciences
  • DOI:
    10.1038/s43017-023-00450-9
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    42.1
  • 作者:
    Chaopeng Shen;A. Appling;P. Gentine;Toshiyuki Bandai;H. Gupta;A. Tartakovsky;M. Baity-Jesi;F. Fenicia;Daniel Kifer;Li Li-Li;Xiaofeng Liu;Wei Ren;Y. Zheng;C. Harman;M. Clark;M. Farthing;D. Feng;Praveen Kumar;Doaa Aboelyazeed;F. Rahmani;Yalan Song;H. Beck;Tadd Bindas;D. Dwivedi;K. Fang;Marvin Höge;Christopher Rackauckas;B. Mohanty;Tirthankar Roy;Chonggang Xu;K. Lawson
  • 通讯作者:
    Chaopeng Shen;A. Appling;P. Gentine;Toshiyuki Bandai;H. Gupta;A. Tartakovsky;M. Baity-Jesi;F. Fenicia;Daniel Kifer;Li Li-Li;Xiaofeng Liu;Wei Ren;Y. Zheng;C. Harman;M. Clark;M. Farthing;D. Feng;Praveen Kumar;Doaa Aboelyazeed;F. Rahmani;Yalan Song;H. Beck;Tadd Bindas;D. Dwivedi;K. Fang;Marvin Höge;Christopher Rackauckas;B. Mohanty;Tirthankar Roy;Chonggang Xu;K. Lawson
Differentiable, Learnable, Regionalized Process‐Based Models With Multiphysical Outputs can Approach State‐Of‐The‐Art Hydrologic Prediction Accuracy
  • DOI:
    10.1029/2022wr032404
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    D. Feng;Jiangtao Liu;K. Lawson;Chaopeng Shen
  • 通讯作者:
    D. Feng;Jiangtao Liu;K. Lawson;Chaopeng Shen
Evaluating a global soil moisture dataset from a multitask model (GSM3 v1.0) with potential applications for crop threats
通过多任务模型 (GSM3 v1.0) 评估全球土壤湿度数据集以及作物威胁的潜在应用
  • DOI:
    10.5194/gmd-16-1553-2023
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Liu, Jiangtao;Hughes, David;Rahmani, Farshid;Lawson, Kathryn;Shen, Chaopeng
  • 通讯作者:
    Shen, Chaopeng
The suitability of differentiable, physics-informed machine learning hydrologic models for ungauged regions and climate change impact assessment
  • DOI:
    10.5194/hess-27-2357-2023
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    D. Feng;H. Beck;K. Lawson;Chaopeng Shen
  • 通讯作者:
    D. Feng;H. Beck;K. Lawson;Chaopeng Shen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chaopeng Shen其他文献

Accurate and efficient prediction of fine‐resolution hydrologic and carbon dynamic simulations from coarse‐resolution models
通过粗分辨率模型对精细分辨率逻辑和碳动态模拟进行准确高效的水文预测
  • DOI:
    10.1002/2015wr017782
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    G. Pau;Chaopeng Shen;W. Riley;Yaning Liu
  • 通讯作者:
    Yaning Liu
A deep learning-based novel approach to generate continuous daily stream nitrate concentration for nitrate data-sparse watersheds
一种基于深度学习的新颖方法,用于为硝酸盐数据稀疏流域生成连续的每日流量硝酸盐浓度
  • DOI:
    10.1016/j.scitotenv.2023.162930
  • 发表时间:
    2023-06-20
  • 期刊:
  • 影响因子:
    8.000
  • 作者:
    Gourab Kumer Saha;Farshid Rahmani;Chaopeng Shen;Li Li;Raj Cibin
  • 通讯作者:
    Raj Cibin
Physics-guided deep learning for rainfall-runoff modeling by considering extreme events and monotonic relationships
通过考虑极端事件和单调关系来进行降雨径流建模的物理引导深度学习
  • DOI:
    10.1016/j.jhydrol.2021.127043
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Kang Xie;Pan Liu;Jianyun Zhang;Dongyang Han;Guoqing Wang;Chaopeng Shen
  • 通讯作者:
    Chaopeng Shen
Temperature outweighs light and flow as the predominant driver of dissolved oxygen in US rivers
温度超过光和水流成为美国河流溶解氧的主要驱动因素
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei Zhi;Wenyu Ouyang;Chaopeng Shen;Li Li
  • 通讯作者:
    Li Li
Transferring hydrologic data across continents -- leveraging US data to improve hydrologic prediction in other countries
跨大陆传输水文数据——利用美国数据改进其他国家的水文预测
  • DOI:
    10.1002/essoar.10504132.1
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    K. Ma;D. Feng;K. Lawson;W. Tsai;Chuan Liang;Xiao;Ashutosh Sharma;Chaopeng Shen
  • 通讯作者:
    Chaopeng Shen

Chaopeng Shen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chaopeng Shen', 18)}}的其他基金

Hydro-ML: Symposium on Big Data Machine Learning in Hydrology and Water Resources; Pennsylvania, May 25-29, 2020
Hydro-ML:水文水资源大数据机器学习研讨会;
  • 批准号:
    2015680
  • 财政年份:
    2020
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Collaborative Research: Predictive Risk Investigation SysteM (PRISM) for Multi-layer Dynamic Interconnection Analysis
合作研究:用于多层动态互连分析的预测风险调查系统(PRISM)
  • 批准号:
    1940190
  • 财政年份:
    2019
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Examining groundwater-flood and soil moisture-flood relationships across scales using national-scale data mining, deep learning and knowledge distillation
使用国家规模的数据挖掘、深度学习和知识蒸馏来检查跨尺度的地下水-洪水和土壤水分-洪水关系
  • 批准号:
    1832294
  • 财政年份:
    2018
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant

相似海外基金

imProve Offshore infraStructurE resIlience against geohazarDs tOwards a chaNging climate
提高海上基础设施抵御气候变化地质灾害的能力
  • 批准号:
    EP/Y032683/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Research Grant
PlastiRootS - Evaluation of complex Root traits towards PLASTIcity in barley under Salt stress for improving climate resilience and productivity
PlastiRootS - 评估盐胁迫下大麦可塑性的复杂根性状,以提高气候适应能力和生产力
  • 批准号:
    EP/Y030435/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Fellowship
imProve Offshore infraStructurE resIlience against geohazarDs tOwards a chaNging climate
提高海上基础设施抵御气候变化地质灾害的能力
  • 批准号:
    EP/Y032462/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Research Grant
Towards climate stabilisation: understanding changes in climate, climate variability, and impacts
实现气候稳定:了解气候变化、气候变异性和影响
  • 批准号:
    NE/X017850/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Fellowship
Towards an Integrated Capability to Explain and Predict Regional Climate Changes (EXPECT)
建立解释和预测区域气候变化的综合能力(EXPECT)
  • 批准号:
    10093446
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    EU-Funded
Co-developing pathways towards Climate resilient regions in Europe (PEERS)
共同开发通往欧洲气候适应地区的道路 (PEERS)
  • 批准号:
    10063306
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    EU-Funded
Belmont Forum Collaborative Research: Climate extremes and migration in Madagascar: Towards an integrated monitoring and modeling for mitigation and adaptation
贝尔蒙特论坛合作研究:马达加斯加的极端气候和移民:迈向缓解和适应的综合监测和建模
  • 批准号:
    2318924
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Retrofitting towards climate neutrality - Green Marine
气候中和改造 - Green Marine
  • 批准号:
    10064539
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    EU-Funded
Retrofitting towards climate neutrality
改造以实现气候中和
  • 批准号:
    10068477
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    EU-Funded
THE EUROPEAN LIVING LAB ON DESIGNING SUSTAINABLE URBAN MOBILITY TOWARDS CLIMATE NEUTRAL CITIES
欧洲生活实验室设计可持续城市交通以实现气候中和城市
  • 批准号:
    10069203
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了