Collaborative Research: SaTC: CORE: Medium: Quicksilver: A Write-oriented, Private, Outsourced Database Management System

协作研究:SaTC:核心:媒介:Quicksilver:面向写入的私有外包数据库管理系统

基本信息

  • 批准号:
    2016393
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Businesses, non-profits, and other organizations are increasingly outsourcing their database needs to third-party cloud providers. The cloud offers many competitive advantages over on-premises deployments including lower costs, high availability, unprecedented scalability, and ease of deployment and maintenance. At the same time, the rise of a hybrid transaction and analytics processing (HTAP) systems presents an additional promise to address the need for real-time data-driven business intelligence by supporting both transactional as well as analytical functions in a single platform. Privacy, legal, and political constraints, however, require organizations to minimize and formally quantify the information leaked outside their organizational boundaries. While there has been much work on building query answering systems on untrusted hardware using encrypted databases and multiparty computation, almost none of these efforts handle database updates, support transactions with interleaving operations, or offer recovery from failures while ensuring strong privacy guarantees. This work will exploit synergies among four areas of research -- databases, oblivious RAMs, secure multiparty computation, and differential privacy. Quicksilver will make it possible to query sensitive data while outsourcing database operations to untrusted cloud providers and this work will have immediate implications for healthcare, federal statistical agencies such as the US Census Bureau, finance, and education. The investigators will integrate this research into a comprehensive education, dissemination and outreach plan that will result in (a) new graduate and undergraduate and graduate courses with open-source materials, (b) the mentoring of graduate students -- especially women and URMs -- on techniques for thriving during their studies, (c) open-source lesson plans for high school teachers on data science, and (d) courses for employees of federal agencies on these topics. In this project, the investigators will design, implement, and evaluate principled techniques for data processing on untrusted third-party platforms. The investigators will first design and implement efficient protocols for updating databases using techniques in cryptography, differential privacy, and systems. They will then create and evaluate algorithms for privacy-preserving concurrency control so that Quicksilver’s transactions will offer interleaving transactions with atomicity, consistency, isolation, and durability (ACID), the gold standard of database systems. In addition, this work will result in protocols for transaction recovery under secure computation when individual cloud nodes fail mid-transaction. This research will reveal novel techniques in oblivious query processing, secure multiparty computation, and differentially-private algorithms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
企业、非营利组织和其他组织越来越多地将其数据库需求外包给第三方云提供商。与本地部署相比,云提供了许多竞争优势,包括更低的成本、高可用性、前所未有的可扩展性以及易于部署和维护。与此同时,混合交易和分析处理(HTAP)系统的兴起,通过在单一平台上支持交易和分析功能,为满足实时数据驱动的商业智能需求提供了额外的希望。然而,隐私、法律的和政治约束要求组织最小化并正式量化泄露到其组织边界之外的信息。 虽然在使用加密数据库和多方计算在不受信任的硬件上构建查询应答系统方面有很多工作,但这些努力几乎都没有处理数据库更新,支持交叉操作的事务,或者在确保强大隐私保证的同时提供故障恢复。这项工作将利用四个研究领域之间的协同作用-数据库,遗忘RAM,安全多方计算和差异隐私。 Quicksilver将使查询敏感数据成为可能,同时将数据库操作外包给不受信任的云提供商,这项工作将对医疗保健,联邦统计机构(如美国人口普查局),金融和教育产生直接影响。 研究人员将把这项研究整合到一个全面的教育、传播和推广计划中,这将导致(a)新的研究生、本科生和研究生课程,使用开源材料,(B)指导研究生--特别是女性和URMs --在学习期间获得成功的技术,(c)为高中教师提供数据科学开源课程计划,以及(d)为联邦机构的雇员举办关于这些主题的课程。在这个项目中,研究人员将设计,实施和评估在不受信任的第三方平台上进行数据处理的原则性技术。 研究人员将首先设计和实现有效的协议,用于使用密码学,差分隐私和系统技术更新数据库。 然后,他们将创建和评估隐私保护并发控制的算法,以便Quicksilver的事务将提供具有原子性,一致性,隔离性和持久性(ACID)的交叉事务,这是数据库系统的黄金标准。 此外,这项工作将导致在安全计算下的交易恢复协议时,个别云节点失败的中间事务。 这项研究将揭示在不经意的查询处理,安全多方计算,和差分隐私algorithm.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Private Proof-of-Stake Blockchains using Differentially-Private Stake Distortion
使用差分私人股权扭曲的私人股权证明区块链
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang, Chenghong;Pujol, David;Nayak, Kartik;Machanavajjhala, Ashwin
  • 通讯作者:
    Machanavajjhala, Ashwin
DP-Sync: Hiding Update Patterns in Secure Outsourced Databases with Differential Privacy
IncShrink: Architecting Efficient Outsourced Databases using Incremental MPC and Differential Privacy
Longshot: Indexing Growing Databases using MPC and Differential Privacy
  • DOI:
    10.14778/3594512.3594529
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanping Zhang;Johes Bater;Kartik Nayak;Ashwin Machanavajjhala
  • 通讯作者:
    Yanping Zhang;Johes Bater;Kartik Nayak;Ashwin Machanavajjhala
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kartik Ravidas Nayak其他文献

Kartik Ravidas Nayak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kartik Ravidas Nayak', 18)}}的其他基金

CAREER: Scalable Consensus Protocol Design with Accountability and Privacy under Practical Failure Models
职业:在实际失败模型下具有责任和隐私的可扩展共识协议设计
  • 批准号:
    2237814
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
RAPID: Poirot: From Contact Tracing to Private Exposure Detection
RAPID:波洛:从接触者追踪到私人暴露检测
  • 批准号:
    2029853
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330941
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
  • 批准号:
    2413046
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
  • 批准号:
    2312057
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Investigation of Naming Space Hijacking Threat and Its Defense
协作研究:SaTC:核心:小型:命名空间劫持威胁及其防御的调查
  • 批准号:
    2317830
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
  • 批准号:
    2318843
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了