Electromechanical Interactions of Gold Nanomaterials with Human Cardiac Cells
金纳米材料与人体心肌细胞的机电相互作用
基本信息
- 批准号:2016501
- 负责人:
- 金额:$ 55.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nanomaterials have been widely used for a diverse range of applications from environmental to biological engineering and therapeutics. Among different types of nanomaterials, gold nanomaterials are promising candidates because of their minimal toxicity, ease of fabrication, and electrical conductivity. Gold nanomaterials are used in applications such as regenerative medicine, specifically for engineering of electroconductive tissues (e.g. cardiac, nerve or skeletal) that could be used for treatment of trauma, injuries or diseases. However, there are still knowledge gaps regarding mechanistic understanding about interactions between gold nanomaterials with electroactive human heart cells. This research team brings interdisciplinary expertise in biological, environmental and nanotechnology engineering. It aims to synthesize diverse geometries of gold nanomaterials and use 3-dimensionsal hydrogel biomaterials that mimic a porous tissue microenvironment to independently study the biophysical and electrical interactions of nanomaterials with human heart cells at cellular and molecular levels. The project has been carefully designed to broadly impact society through educating the next generation of high school, undergraduate, and graduate students, while bringing synergy among scientists across interdisciplinary fields. This project focuses on the development of a mechanistic and fundamental framework for the interactions of gold nanomaterials with human cardiac cells (i.e. heart cells) that modulate their biological response. The research design is based on a two-fold strategy, through independent assessment of the biophysical and electrical interactions of gold nanomaterials with cardiac cells. First, a library of gold nanomaterials with a wide range of geometries and defined surface chemistries, will be synthesized and then embedded in hydrogel-based scaffolding biomaterials to mimic a porous native-like tissue microenvironment found in the heart. Subsequently, cellular uptake of gold nanomaterials, surface colonization, spreading as well as changes in cytoskeletal structure of the cardiac cells and specific protein markers will be assessed within the nano-enabled hydrogels. Next, gold nanoparticles will be synthesized with different surface functionalities, while maintaining a fixed particle geometry, to specifically isolate the effect of varying conductivity of nanomaterials on the electrophysiological response of cardiac cells. Through these research objectives, the team will test the overarching hypothesis that the mode of interaction of gold nanomaterials with cardiac cells is through two primary independent pathways by which gold nanomaterials influence the cellular-level function and molecular-level response of the cells. These two pathways are biophysical and electrophysiological sensing. The outcome of this study will generate fundamental knowledge for in depth understanding of interactions of conductive nanomaterials with human cells and will further enable better design of nanomaterials for biological and environmental systems. Additionally, the interdisciplinary nature of this study will train the next generation of high school, undergraduate and graduate students, will broadly present the methodology and the outcome of this research to the scientific community and will bring together scientist and collaborators across interdisciplinary fields, ranging from bioengineering to nanotechnology, surface engineering, and cell biology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
纳米材料已被广泛应用于从环境到生物工程和治疗的各种应用。在不同类型的纳米材料中,金纳米材料因其毒性小、易于制备和导电性而成为很有前途的候选材料。金纳米材料被用于再生医学等应用,特别是可用于治疗创伤、损伤或疾病的导电组织(例如心脏、神经或骨骼)的工程。然而,关于金纳米材料与电活性人体心脏细胞之间的相互作用的机理理解仍然存在知识空白。这个研究团队带来了生物、环境和纳米技术工程方面的跨学科专业知识。它旨在合成不同几何形状的金纳米材料,并利用模拟多孔组织微环境的三维水凝胶生物材料在细胞和分子水平上独立研究纳米材料与人类心脏细胞的生物物理和电学相互作用。该项目经过精心设计,旨在通过教育下一代高中生、本科生和研究生来广泛影响社会,同时在跨学科领域的科学家之间带来协同效应。该项目的重点是开发金纳米材料与调节其生物反应的人类心脏细胞(即心脏细胞)相互作用的机械和基本框架。这项研究设计基于双重战略,通过独立评估金纳米材料与心脏细胞的生物物理和电学相互作用。首先,将合成一个具有广泛几何结构和定义的表面化学成分的金纳米材料库,然后将其嵌入基于水凝胶的支架生物材料中,以模拟心脏中发现的多孔的天然组织微环境。随后,将在纳米启用的水凝胶中评估细胞对金纳米材料的摄取、表面定植、扩散以及心肌细胞和特定蛋白质标志物的细胞骨架结构的变化。接下来,将合成具有不同表面功能的金纳米颗粒,同时保持固定的颗粒几何形状,以具体隔离纳米材料的不同电导率对心肌细胞电生理反应的影响。通过这些研究目标,该团队将检验最重要的假设,即金纳米材料与心脏细胞的相互作用模式是通过两条主要的独立途径来实现的,通过这两条途径,金纳米材料影响细胞水平的功能和分子水平的反应。这两条途径是生物物理和电生理感知。这项研究的结果将为深入了解导电纳米材料与人类细胞的相互作用提供基础知识,并将进一步为生物和环境系统更好地设计纳米材料。此外,这项研究的跨学科性质将培养下一代高中生、本科生和研究生,将向科学界广泛展示这项研究的方法和结果,并将汇集从生物工程到纳米技术、表面工程和细胞生物学等跨学科领域的科学家和合作者。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electroconductive Hydrogel Scaffolds to Enhance Maturation of Human iPSC-derived Cardiac Tissues
导电水凝胶支架可促进人 iPSC 来源的心脏组织的成熟
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Esmaeili, Hamid
- 通讯作者:Esmaeili, Hamid
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mehdi Nikkhah其他文献
On the adoption dynamics of internet technologies: Models and case studies
关于互联网技术的采用动态:模型和案例研究
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Mehdi Nikkhah - 通讯作者:
Mehdi Nikkhah
Why didn't my (great!) protocol get adopted?
为什么我的(太棒了!)协议没有被采用?
- DOI:
10.1145/2834050.2834103 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Mehdi Nikkhah;C. Dovrolis;R. Guérin - 通讯作者:
R. Guérin
A Statistical Exploration of Protocol Adoption
协议采用的统计探索
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Mehdi Nikkhah;Aman Mangal;C. Dovrolis;R. Guérin - 通讯作者:
R. Guérin
Three-dimensional microengineered models of human cardiac diseases
- DOI:
10.1186/s13036-019-0155-6 - 发表时间:
2019-04-03 - 期刊:
- 影响因子:6.500
- 作者:
Jaimeson Veldhuizen;Raymond Q. Migrino;Mehdi Nikkhah - 通讯作者:
Mehdi Nikkhah
Development of an electroconductive Heart-on-a-chip model to investigate cellular and molecular response of human cardiac tissue to gold nanomaterials
开发一种导电的心脏芯片模型,以研究人类心脏组织对金纳米材料的细胞和分子反应
- DOI:
10.1016/j.biomaterials.2025.123275 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:12.900
- 作者:
Hamid Esmaeili;Yining Zhang;Kalpana Ravi;Keagan Neff;Wuqiang Zhu;Raymond Q. Migrino;Jin G. Park;Mehdi Nikkhah - 通讯作者:
Mehdi Nikkhah
Mehdi Nikkhah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mehdi Nikkhah', 18)}}的其他基金
Microengineering of Organotypic and Vascularized Tumor Microenvironment Models for Mechanistic Studies of the Metastatic Cascade
用于转移级联机制研究的器官型和血管化肿瘤微环境模型的微工程
- 批准号:
2309859 - 财政年份:2023
- 资助金额:
$ 55.69万 - 项目类别:
Standard Grant
Investigating the Biophysical and Biochemical Influences of Stromal Cells on Anti-Cancer Drug Resistance within Bioengineered Tumor Microenvironment Models
在生物工程肿瘤微环境模型中研究基质细胞对抗癌药物耐药性的生物物理和生化影响
- 批准号:
1914680 - 财政年份:2019
- 资助金额:
$ 55.69万 - 项目类别:
Standard Grant
CAREER: Cardiac Ischemia On-a-Chip: Probing Mechanisms Underlying Molecular, Cellular and Tissue-Level Adaptive Responses After Injury
职业:心脏缺血芯片:探测损伤后分子、细胞和组织水平适应性反应的机制
- 批准号:
1653193 - 财政年份:2017
- 资助金额:
$ 55.69万 - 项目类别:
Standard Grant
UNS: Three Dimensional Microengineered Diseased Tissue Model to Study Invasive Phenotype of Cancer Cells
UNS:三维微工程病变组织模型来研究癌细胞的侵袭表型
- 批准号:
1510700 - 财政年份:2015
- 资助金额:
$ 55.69万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
- 批准号:
2336840 - 财政年份:2024
- 资助金额:
$ 55.69万 - 项目类别:
Continuing Grant
CAREER: Modeling and Decoding Host-Microbiome Interactions in Gingival Tissue
职业:建模和解码牙龈组织中宿主-微生物组的相互作用
- 批准号:
2337322 - 财政年份:2024
- 资助金额:
$ 55.69万 - 项目类别:
Continuing Grant
CAREER: Leveraging Plastic Deformation Mechanisms Interactions in Metallic Materials to Access Extraordinary Fatigue Strength.
职业:利用金属材料中的塑性变形机制相互作用来获得非凡的疲劳强度。
- 批准号:
2338346 - 财政年份:2024
- 资助金额:
$ 55.69万 - 项目类别:
Continuing Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 55.69万 - 项目类别:
Standard Grant
Conference: 2024 NanoFlorida Conference: New Frontiers in Nanoscale interactions
会议:2024 年纳米佛罗里达会议:纳米尺度相互作用的新前沿
- 批准号:
2415310 - 财政年份:2024
- 资助金额:
$ 55.69万 - 项目类别:
Standard Grant
RUI: Investigating the Covalency of Intermolecular Interactions and its Effect on the Properties of Supramolecular Complexes.
RUI:研究分子间相互作用的共价性及其对超分子复合物性质的影响。
- 批准号:
2404011 - 财政年份:2024
- 资助金额:
$ 55.69万 - 项目类别:
Standard Grant
NSF PRFB FY 2023: Impact of Environment-Seagrass-Microbe Interactions on Seagrass Stress Response and Ecosystem Functions
NSF PRFB 2023 财年:环境-海草-微生物相互作用对海草应激反应和生态系统功能的影响
- 批准号:
2305691 - 财政年份:2024
- 资助金额:
$ 55.69万 - 项目类别:
Fellowship Award
CAREER: Impact of MRI contrast agent design on nanoscale interactions with neutrophils and platelets
职业:MRI 造影剂设计对中性粒细胞和血小板纳米级相互作用的影响
- 批准号:
2339015 - 财政年份:2024
- 资助金额:
$ 55.69万 - 项目类别:
Standard Grant
Interactions of Human and Machine Intelligence in Modern Economic Systems
现代经济系统中人与机器智能的相互作用
- 批准号:
DP240100506 - 财政年份:2024
- 资助金额:
$ 55.69万 - 项目类别:
Discovery Projects
Understanding Material Interactions and Effects on Polymicrobial Communities at Surfaces
了解材料相互作用和对表面多种微生物群落的影响
- 批准号:
BB/Y512412/1 - 财政年份:2024
- 资助金额:
$ 55.69万 - 项目类别:
Training Grant