Investigating the Biophysical and Biochemical Influences of Stromal Cells on Anti-Cancer Drug Resistance within Bioengineered Tumor Microenvironment Models

在生物工程肿瘤微环境模型中研究基质细胞对抗癌药物耐药性的生物物理和生化影响

基本信息

  • 批准号:
    1914680
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Cancer is currently the second leading cause of death in the United States, claiming the lives of over half a million Americans annually. Although there has been a major thrust in cancer therapeutic research, metastatic cancers, i.e., cancers that have been formed by cancer cells that have been transmitted from an original growth at another site, are still deadly, largely due to their resistance to anti-cancer drugs. Many therapeutic strategies, developed using gold standard animal models and conventional cell culture methods, often fail due to not considering the complex cellular and molecular interactions of cancer cells within the surrounding tumor microenvironment. Despite significant advancements in the use of bioengineered tumor models to study different facets of cancer, none of the previous studies have accurately reconstructed the complex tumor microenvironment, composed of various types of stromal cells (cells in connective tissue) and the extracellular matrix (ECM) proteins that are crucial for determining the role of each microenvironmental component on anti-cancer drug resistance. The objective of this project is to directly addresses this knowledge gap by taking an innovative step forward to mechanistically study the role of stromal cells on anti-cancer drug resistance, utilizing bioengineered tumor microenvironment models that can accommodate key stromal cells and ECM components. The specific hypothesis of this study is that physical and chemical signaling cues, originating from tumor-stroma crosstalk, contribute to the drug resistance by a combinatorial mechanism of inhibiting drug penetration and activating compensatory drug resistance pathways in cancer cells. The research program brings a unique synergy between multiple scientific disciplines of tissue engineering, 3D imaging, and cancer cell biology. Insights gained will lead to more comprehensive understanding on the role of tumor-stroma crosstalk in anti-cancer drug resistance. The unique features of the tumor models will also overcome technical limitations of preexisting methods and thus allow better understanding of the effectiveness of anti-cancer therapeutics. With respect to the educational impact, the multidisciplinary nature of this study will engage and train a new generation of high school, undergraduate and graduate students in STEM fields and provide a unique opportunity to bring synergy and collaborations among bioengineers and cancer biologists. The proposed initiatives also promote dissemination of the generated fundamental knowledge to the scientific community through online modules and publications.This project focuses on mechanistically studying the role of tumor microenvironment and stromal cells on anti-cancer drug resistance using 3D bioengineered organotypic tumor microenvironmental models of breast cancer that are incorporated with key stromal cells, cancer associated fibroblasts (CAFs)and tumor associated macrophages (TAMs). The overarching hypothesis of the project is that the physiochemical signaling cues originating from tumor-stroma crosstalk lead to distinct mechanisms, which initially promote stromal remodeling and inhibit drug penetration and further results in emergence of compensatory drug-resistance pathways, which together lead to chemotherapeutic drug resistance. The research plan is organized under two objectives. The FIRST OBJECTIVE is to dissect the role of CAFs mediated stromal desmoplasia (growth of fibrous or connective tissue) on chemotherapeutic drug resistance. A high-density tumor-stroma model will be developed and characterized relative to ECM stiffness and remodeling during tumor growth. A panel of anti-fibrotic drugs will be used to inhibit stromal desmoplasia, and matrix remodeling and stiffness will be assessed in response to each drug. A 3D microfluidic platform will be used to test the penetration of chemotherapeutic drugs alone and in combination with the antfibrotic drugs, and the drug distribution profile will be correlated with stromal modeling and stiffness. The experiments are designed to test the hypothesis that the primary mechanism of failure of chemotherapeutic drugs is due to biophysical barriers and insufficient drug penetration within the stroma to reach the tumor core. The SECOND OBJECTIVE is to mechanistically study the synergistic influence of cellular signaling from stromal CAFs AND TAMs on drug resistance. The bioengineered 3D microfluidic platform will be used to construct a tumor-stroma model with a tri-culture of cancer cells, CAFs and TAMs. A panel of chemotherapeutic drugs that have been used in treating triple negative breast cancer will be screened to assess cancer cell invasion at the single cell level as well as tumor viability and growth in response to drug treatment. Then, in drug targets that have exhibited the lowest efficacy in inhibiting tumor growth and invasion, RNA sequencing will be utilized to assess alterations in cancer genomics and to identity compensatory pathways that lead to drug resistance. The experiments are designed to test the hypothesis that the integrated response within the stroma embedded with co-culture of CAFS and TAMs, due to cell-cell signaling crosstalk, is more pronounced than the sum of all the individual cues on drug resistance. The integrated studies and biological data from the project will enable the construction of a mechanistic framework on the comprehensive role of physiochemical signaling cues, in the context of tumor-stroma crosstalk, on anti-cancer drug resistance. Collectively, the research outcomes will advance fundamental science pertinent to cancer biology and anti-cancer drug resistance and will contribute to the broader biopharmaceutical tumor-on-chip communities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
癌症目前是美国第二大死亡原因,每年夺去超过50万美国人的生命。虽然在癌症治疗研究中有一个主要的推力,但转移性癌症,即,由癌细胞从另一个部位的原始生长转移而形成的癌症仍然是致命的,这主要是由于它们对抗癌药物的耐药性。使用金标准动物模型和常规细胞培养方法开发的许多治疗策略通常由于没有考虑癌细胞在周围肿瘤微环境中的复杂细胞和分子相互作用而失败。尽管在使用生物工程肿瘤模型研究癌症的不同方面方面取得了重大进展,但以前的研究都没有准确重建复杂的肿瘤微环境,由各种类型的基质细胞(结缔组织中的细胞)和细胞外基质(ECM)蛋白组成,这些蛋白对于确定每个微环境组分对抗癌药物耐药性的作用至关重要。该项目的目标是直接解决这一知识差距,采取创新的一步,利用生物工程肿瘤微环境模型,可以容纳关键的基质细胞和ECM成分,机械地研究基质细胞对抗癌药物耐药性的作用。本研究的具体假设是,源自肿瘤-间质串扰的物理和化学信号线索通过抑制药物渗透和激活癌细胞中的补偿性耐药途径的组合机制而促成耐药。 该研究计划带来了组织工程,3D成像和癌细胞生物学多个科学学科之间的独特协同作用。获得的见解将导致更全面地了解肿瘤-间质串扰在抗癌药物耐药性中的作用。 肿瘤模型的独特功能也将克服现有方法的技术限制,从而更好地了解抗癌治疗的有效性。在教育影响方面,这项研究的多学科性质将吸引和培养新一代的高中,本科和研究生在STEM领域,并提供一个独特的机会,使生物工程师和癌症生物学家之间的协同作用和合作。该项目的重点是利用3D生物工程乳腺癌器官型肿瘤微环境模型,结合关键基质细胞,癌相关成纤维细胞(CAF)和肿瘤相关巨噬细胞(TAM)。 该项目的总体假设是,源自肿瘤-间质串扰的理化信号线索导致不同的机制,其最初促进间质重塑并抑制药物渗透,并进一步导致代偿性耐药途径的出现,其共同导致化疗药物耐药性。 研究计划是根据两个目标组织的。 第一个目的是剖析CAFs介导的间质结缔组织增生(纤维或结缔组织的生长)对化疗药物耐药性的作用。 将开发高密度肿瘤-间质模型,并相对于肿瘤生长期间的ECM硬度和重塑进行表征。 一组抗纤维化药物将用于抑制基质结缔组织增生,并评估基质重塑和刚度对每种药物的反应。 3D微流体平台将用于测试单独的化疗药物和与抗纤维化药物组合的化疗药物的渗透,并且药物分布曲线将与基质建模和刚度相关。 设计实验以检验以下假设:化疗药物失败的主要机制是由于生物物理屏障和基质内的药物渗透不足以到达肿瘤核心。 第二个目的是从机制上研究来自基质CAF和TAM的细胞信号传导对耐药性的协同影响。 生物工程3D微流体平台将用于构建具有癌细胞、CAF和TAM的三重培养物的肿瘤基质模型。 将筛选一组已用于治疗三阴性乳腺癌的化疗药物,以评估单细胞水平的癌细胞侵袭以及响应于药物治疗的肿瘤活力和生长。 然后,在抑制肿瘤生长和侵袭方面表现出最低功效的药物靶点中,RNA测序将用于评估癌症基因组学的改变并识别导致耐药性的补偿途径。 设计实验以检验以下假设:由于细胞-细胞信号传导串扰,包埋有CAFS和TAM的共培养物的基质内的综合反应比所有单个耐药性线索的总和更明显。 该项目的综合研究和生物学数据将能够构建一个关于肿瘤-间质串扰背景下理化信号线索对抗癌药物耐药性的综合作用的机制框架。总的来说,这些研究成果将推动与癌症生物学和抗癌药物耐药性相关的基础科学,并将为更广泛的生物制药肿瘤芯片社区做出贡献。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Microengineered 3D Tumor Models for Anti-Cancer Drug Discovery in Female-Related Cancers
  • DOI:
    10.1007/s10439-020-02704-9
  • 发表时间:
    2021-01-05
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Amirghasemi, Farbod;Adjei-Sowah, Emmanuela;Nikkhah, Mehdi
  • 通讯作者:
    Nikkhah, Mehdi
The Role of Paracrine Signaling between Breast Cancer and Stromal Cells on Remodeling of Tumor Microenvironment ECM
乳腺癌和基质细胞之间的旁分泌信号在肿瘤微环境 ECM 重塑中的作用
The role of tumor-stroma interactions on desmoplasia and tumorigenicity within a microengineered 3D platform
  • DOI:
    10.1016/j.biomaterials.2020.119975
  • 发表时间:
    2020-07-01
  • 期刊:
  • 影响因子:
    14
  • 作者:
    Saini, Harpinder;Eliato, Kiarash Rahmani;Nikkhah, Mehdi
  • 通讯作者:
    Nikkhah, Mehdi
Microengineered Tumor-On-Chip Model to Decipher The Role of Stromal Crosstalk on Tumor Progression
微工程芯片肿瘤模型解读基质串扰对肿瘤进展的作用
Investigating the Role of the Perivascular Niche on Glioma Stem Cell Invasion in a Three-Dimensional Microfluidic Tumor Microenvironment Model
在三维微流控肿瘤微环境模型中研究血管周围微环境对胶质瘤干细胞侵袭的作用
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mehdi Nikkhah其他文献

On the adoption dynamics of internet technologies: Models and case studies
关于互联网技术的采用动态:模型和案例研究
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mehdi Nikkhah
  • 通讯作者:
    Mehdi Nikkhah
Why didn't my (great!) protocol get adopted?
为什么我的(太棒了!)协议没有被采用?
A Statistical Exploration of Protocol Adoption
协议采用的统计探索
Three-dimensional microengineered models of human cardiac diseases
  • DOI:
    10.1186/s13036-019-0155-6
  • 发表时间:
    2019-04-03
  • 期刊:
  • 影响因子:
    6.500
  • 作者:
    Jaimeson Veldhuizen;Raymond Q. Migrino;Mehdi Nikkhah
  • 通讯作者:
    Mehdi Nikkhah
Development of an electroconductive Heart-on-a-chip model to investigate cellular and molecular response of human cardiac tissue to gold nanomaterials
开发一种导电的心脏芯片模型,以研究人类心脏组织对金纳米材料的细胞和分子反应
  • DOI:
    10.1016/j.biomaterials.2025.123275
  • 发表时间:
    2025-09-01
  • 期刊:
  • 影响因子:
    12.900
  • 作者:
    Hamid Esmaeili;Yining Zhang;Kalpana Ravi;Keagan Neff;Wuqiang Zhu;Raymond Q. Migrino;Jin G. Park;Mehdi Nikkhah
  • 通讯作者:
    Mehdi Nikkhah

Mehdi Nikkhah的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mehdi Nikkhah', 18)}}的其他基金

Microengineering of Organotypic and Vascularized Tumor Microenvironment Models for Mechanistic Studies of the Metastatic Cascade
用于转移级联机制研究的器官型和血管化肿瘤微环境模型的微工程
  • 批准号:
    2309859
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Electromechanical Interactions of Gold Nanomaterials with Human Cardiac Cells
金纳米材料与人体心肌细胞的机电相互作用
  • 批准号:
    2016501
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Cardiac Ischemia On-a-Chip: Probing Mechanisms Underlying Molecular, Cellular and Tissue-Level Adaptive Responses After Injury
职业:心脏缺血芯片:探测损伤后分子、细胞和组织水平适应性反应的机制
  • 批准号:
    1653193
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
UNS: Three Dimensional Microengineered Diseased Tissue Model to Study Invasive Phenotype of Cancer Cells
UNS:三维微工程病变组织模型来研究癌细胞的侵袭表型
  • 批准号:
    1510700
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

Building biophysical and biochemical complexity in 3D cell and tissue constructs
在 3D 细胞和组织结构中构建生物物理和生化复杂性
  • 批准号:
    10701919
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
Biochemical and Biophysical Studies of Human Ribonucleotide Reductase
人核糖核苷酸还原酶的生化和生物物理研究
  • 批准号:
    10463910
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
Building biophysical and biochemical complexity in 3D cell and tissue constructs
在 3D 细胞和组织结构中构建生物物理和生化复杂性
  • 批准号:
    10501793
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
Parsing the Interplay Between Biophysical and Biochemical Microenvironment Cues On Endometriosis Lesion Phenotypes Using Microphysiological Systems
使用微生理系统解析子宫内膜异位症病变表型的生物物理和生化微环境线索之间的相互作用
  • 批准号:
    10595670
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
Biochemical and Biophysical Tuning of Presynaptic Function by the Clock Protein BMAL1
时钟蛋白 BMAL1 对突触前功能的生化和生物物理调节
  • 批准号:
    10705077
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
Biochemical and Biophysical Studies of Human Ribonucleotide Reductase
人核糖核苷酸还原酶的生化和生物物理研究
  • 批准号:
    10613912
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
Parsing the Interplay Between Biophysical and Biochemical Microenvironment Cues On Endometriosis Lesion Phenotypes Using Microphysiological Systems
使用微生理系统解析子宫内膜异位症病变表型的生物物理和生化微环境线索之间的相互作用
  • 批准号:
    10551985
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
Biochemical and Biophysical Tuning of Presynaptic Function by the Clock Protein BMAL1
时钟蛋白 BMAL1 对突触前功能的生化和生物物理调节
  • 批准号:
    10606746
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
Biophysical and biochemical techniques for the analysis and targeting of ligand-receptor supramolecular complexes
用于分析和靶向配体-受体超分子复合物的生物物理和生化技术
  • 批准号:
    RGPIN-2019-05738
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Developing improved methods for acquiring biochemical and biophysical properties of plant material using non-invasive techniques
开发使用非侵入性技术获取植物材料的生化和生物物理特性的改进方法
  • 批准号:
    535045-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了