Mid-Atlantic Topology Conference
大西洋中部拓扑会议
基本信息
- 批准号:2017119
- 负责人:
- 金额:$ 2.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award provides funding for participants in the Mid-Atlantic Topology Conference taking place April 18-19, 2020 at the University of Pennsylvania in Philadelphia. The conference focuses on a confluence of areas in algebraic topology that are currently at the forefront of research: arithmetic topology, chromatic homotopy theory, applied topology, manifold topology, and geometric representation theory. Priority for funding will be given to graduate students and to junior researchers without other funding sources, and among those to members of underrepresented groups in mathematics. Algebraic topology is enjoying a growing diversity, which this conference will foster through the selection of speakers and participants. This conference is quite timely in light of the research growth in algebraic topology seen on the East Coast in recent years and the resulting growth of student groups in the subject. Modern algebraic topology is intimately tied to a host of fields. From Thom's thesis to the Madsen-Weiss theorem and beyond, stable homotopy theory has long played a crucial role in the study of manifolds. More recently, sophisticated techniques of equivariant stable homotopy theory were brought to bear in the solution of the Kervaire invariant problem concerning exotic smooth structures on spheres, opening new research directions and applications. On the other hand, homotopy theory is connected to algebraic geometry via motivic homotopy theory and applications such as those of abstract scissors congruence K-theory to the classical Grothendieck ring of varieties. Moreover, algebraic topology has seen notable recent application to the study of data in the emerging field of topological data analysis. One of the aims for this conference is to provide a sample of new directions in algebraic topology and interactions with other fields such as geometric topology, arithmetic geometry, and applied topology. The conference features nine 45-minute invited talks over two days. The scientific focus of the conference is decidedly forward-looking: the speakers are rising leaders in the field and include early career researchers; each speaker represents a distinct and vital aspect of the topology of the future. More information can be found on the webpage: https://sites.google.com/view/mid-atlantic-topology/homeThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项为2020年4月18日至19日在费城宾夕法尼亚大学举行的中大西洋拓扑会议的参与者提供资金。会议重点讨论了代数拓扑学中目前处于研究前沿的领域:算术拓扑学,色同伦理论,应用拓扑学,流形拓扑学和几何表示理论。优先资助将给予研究生和没有其他资金来源的初级研究人员,其中包括数学代表性不足的群体的成员。代数拓扑学正在享受越来越多的多样性,本次会议将通过选择发言者和与会者来促进。这次会议是相当及时的研究增长在代数拓扑看到东海岸近年来和由此产生的增长的学生团体在这个问题上。 现代代数拓扑学与许多领域密切相关。从Thom的论文到Madsen-Weiss定理,稳定同伦理论在流形的研究中一直扮演着至关重要的角色。最近,复杂的技术等变稳定同伦理论带来了承担的解决方案的Kervaire不变的问题有关奇异光滑结构的领域,开辟了新的研究方向和应用。另一方面,同伦理论通过动机同伦理论和应用(如抽象剪刀同余K-理论对经典Grothendieck簇环的应用)与代数几何相联系。此外,代数拓扑最近在新兴的拓扑数据分析领域的数据研究中得到了显着的应用。本次会议的目的之一是提供一个样本的新方向代数拓扑和互动与其他领域,如几何拓扑,算术几何,应用拓扑。会议在两天内举行了9场45分钟的特邀演讲。会议的科学重点无疑是前瞻性的:演讲者是该领域的新兴领导者,包括早期的职业研究人员;每个演讲者都代表了未来拓扑结构的一个独特而重要的方面。更多信息可以在以下网页上找到:https://sites.google.com/view/mid-atlantic-topology/homeThis奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mona Merling其他文献
Deformation retraction of the group of strict contactomorphisms of the three-sphere to the unitary group
- DOI:
10.1016/j.geomphys.2024.105293 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Dennis DeTurck;Herman Gluck;Leandro Lichtenfelz;Mona Merling;Yi Wang;Jingye Yang - 通讯作者:
Jingye Yang
Multiplicative equivariant emK/em-theory and the Barratt-Priddy-Quillen theorem
乘法等变 emK/em 理论与巴拉特 - 普里迪 - 奎伦定理
- DOI:
10.1016/j.aim.2023.108865 - 发表时间:
2023-02-01 - 期刊:
- 影响因子:1.500
- 作者:
Bertrand J. Guillou;J. Peter May;Mona Merling;Angélica M. Osorno - 通讯作者:
Angélica M. Osorno
The equivariant parametrized emh/em-cobordism theorem, the non-manifold part
等变参数化 emh/em-配边定理,非流形部分
- DOI:
10.1016/j.aim.2022.108242 - 发表时间:
2022-04-16 - 期刊:
- 影响因子:1.500
- 作者:
Cary Malkiewich;Mona Merling - 通讯作者:
Mona Merling
Mona Merling的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mona Merling', 18)}}的其他基金
FRG: Collaborative Research: Trace Methods and Applications for Cut-and-Paste K-Theory
FRG:协作研究:剪切粘贴 K 理论的追踪方法和应用
- 批准号:
2052988 - 财政年份:2021
- 资助金额:
$ 2.59万 - 项目类别:
Standard Grant
CAREER: Applications of equivariant homotopy theory to manifolds
职业:等变同伦理论在流形上的应用
- 批准号:
1943925 - 财政年份:2020
- 资助金额:
$ 2.59万 - 项目类别:
Continuing Grant
Groups, Manifolds, and Stable Homotopy Theory
群、流形和稳定同伦理论
- 批准号:
1850644 - 财政年份:2018
- 资助金额:
$ 2.59万 - 项目类别:
Standard Grant
Groups, Manifolds, and Stable Homotopy Theory
群、流形和稳定同伦理论
- 批准号:
1709461 - 财政年份:2017
- 资助金额:
$ 2.59万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: AGS-FIRP Track 2--Process Investigation of Clouds and Convective Organization over the atLantic Ocean (PICCOLO)
合作研究:AGS-FIRP Track 2——大西洋上空云和对流组织的过程调查(PICCOLO)
- 批准号:
2331199 - 财政年份:2024
- 资助金额:
$ 2.59万 - 项目类别:
Continuing Grant
Collaborative Research: AGS-FIRP Track 2--Process Investigation of Clouds and Convective Organization over the atLantic Ocean (PICCOLO)
合作研究:AGS-FIRP Track 2——大西洋上空云和对流组织的过程调查(PICCOLO)
- 批准号:
2331200 - 财政年份:2024
- 资助金额:
$ 2.59万 - 项目类别:
Continuing Grant
A data-driven modeling approach for augmenting climate model simulations and its application to Pacific-Atlantic interbasin interactions
增强气候模型模拟的数据驱动建模方法及其在太平洋-大西洋跨流域相互作用中的应用
- 批准号:
23K25946 - 财政年份:2024
- 资助金额:
$ 2.59万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of a mucosally-delivered and active salmon louse vaccine for Atlantic salmon aquaculture
开发用于大西洋鲑鱼水产养殖的粘膜递送活性鲑鱼虱疫苗
- 批准号:
BB/Y006534/1 - 财政年份:2024
- 资助金额:
$ 2.59万 - 项目类别:
Research Grant
Enhanced carbon export driven by internal tides over the mid-Atlantic ridge (CarTRidge)
大西洋中脊内潮汐推动碳输出增强 (CarTRidge)
- 批准号:
NE/X013758/1 - 财政年份:2024
- 资助金额:
$ 2.59万 - 项目类别:
Research Grant
REDUCING BYCATCH OF THREATENED MEGAFAUNA IN THE EAST CENTRAL ATLANTIC
减少中大西洋东部地区受威胁巨型动物的兼捕
- 批准号:
10099456 - 财政年份:2024
- 资助金额:
$ 2.59万 - 项目类别:
EU-Funded
Enhanced carbon export driven by internal tides over the mid-Atlantic ridge (CarTRidge)
大西洋中脊内潮汐推动碳输出增强 (CarTRidge)
- 批准号:
NE/X014193/1 - 财政年份:2024
- 资助金额:
$ 2.59万 - 项目类别:
Research Grant
Enhanced carbon export driven by internal tides over the mid-Atlantic ridge (CarTRidge)
大西洋中脊内潮汐推动碳输出增强 (CarTRidge)
- 批准号:
NE/X014576/1 - 财政年份:2024
- 资助金额:
$ 2.59万 - 项目类别:
Research Grant
Monitoring and elimination of bycatch of endangered and conserved species in the NE and high seas Atlantic region.
监测和消除东北部和公海大西洋地区濒危和保护物种的兼捕。
- 批准号:
10108866 - 财政年份:2024
- 资助金额:
$ 2.59万 - 项目类别:
EU-Funded
Collaborative Research: Prospects and limitations of predicting a potential collapse of the Atlantic meridional overturning circulation
合作研究:预测大西洋经向翻转环流潜在崩溃的前景和局限性
- 批准号:
2343204 - 财政年份:2024
- 资助金额:
$ 2.59万 - 项目类别:
Standard Grant