EAGER: Manufacturing Nanocomposite Materials Using Ultrasound Directed Self-Assembly and Additive Fused Deposition Modeling

EAGER:使用超声波引导自组装和增材熔融沉积建模制造纳米复合材料

基本信息

  • 批准号:
    2017588
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-15 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

This EArly-concept Grants for Exploratory Research (EAGER) award focuses on understanding the basic science required to demonstrate feasibility of a manufacturing process that combines ultrasound directed self-assembly and additive fused deposition modeling to fabricate complex three-dimensional nanocomposite materials. Ultrasound directed self-assembly organizes nanoparticles dispersed in a fluid into user-specified patterns using an external ultrasound wave field. Fused deposition modeling is an extrusion based additive manufacturing process to make three-dimensional objects from a variety of materials. Current methods for patterning nanoparticles involve electric or magnetic field-directed self-assembly, which places strict requirements on the material properties and shape of the nanoparticles. In addition, the need for high electric and magnetic field strengths to organize particles into user-defined patterns limits dimensional scalability of the nanocomposite materials. Ultrasound wave fields permit the manipulation of nanoparticles independent of their material properties and dimensions, thus removing material and size restrictions. Additive fused deposition modeling in combination with the low field-strength required for an ultrasound wave field to penetrate viscous liquids enables dimensional scalability of the manufacturing process because ultrasound waves can propagate over macroscale distances. This project creates new knowledge in ultrasound directed self-assembly of nanoparticles in moving fluids such as in fused deposition modeling. This project contributes to the education of graduate and undergraduate students. The research results are integrated into graduate teaching activities and disseminated into the scientific community.The specific goal of this EAGER research is to show proof-of-concept of a combined ultrasound directed self-assembly (DSA) and fused deposition modeling (FDM) manufacturing process, in which nanoparticles dispersed in a molten FDM filament are organized into specific patterns as it extrudes from the FDM three-dimensional printer nozzle. To achieve this goal, an ultrasound transducer is integrated into the printing nozzle of an FDM printer to enable control of nanoparticle patterning/structuring after melting the FDM filament loaded with nanoparticles. A numerical simulation of the ultrasound wave field determines the ultrasound transducer operating parameters required to obtain user-specified patterns of nanoparticles, accounting for the material properties of both the filament and nanoparticles. This manufacturing process allows the fabrication of 3D macroscale nanocomposite materials of any geometry using FDM and with hierarchical structures that cover multiple length scales using ultrasound DSA. The research focus is on fabricating circular patterns of nanoparticles. The project evaluates whether the circular patterns remain in place when the FDM filament solidifies and is deposited on a substrate. Solving this problem provides the knowledge to devise a combined ultrasound DSA/FDM manufacturing platform. This project allows the PI to advance the knowledge base in nanocomposite materials, additive manufacturing and advanced manufacturing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这一早期概念探索性研究补助金(AGER)奖侧重于了解展示制造工艺的可行性所需的基础科学,该制造工艺结合了超声波引导的自组装和添加剂熔融沉积建模,以制造复杂的三维纳米复合材料。超声波引导的自组装利用外部超声波波场将分散在流体中的纳米颗粒组织成用户指定的模式。熔融沉积成型是一种基于挤压的添加制造工艺,可以从各种材料中制造三维物体。目前构图纳米颗粒的方法包括电场或磁场定向的自组装,这对纳米颗粒的材料特性和形状提出了严格的要求。此外,需要较高的电场和磁场强度来将颗粒组织成用户定义的图案,限制了纳米复合材料的尺寸可伸缩性。超声波场允许操纵纳米颗粒,而与其材料属性和尺寸无关,从而消除了材料和尺寸的限制。添加熔融沉积建模与超声波穿透粘性液体所需的低场强相结合,可实现制造过程的尺寸可伸缩性,因为超声波可以在宏观范围内传播。该项目在纳米颗粒在移动流体中的超声引导自组装方面创造了新的知识,例如在熔融沉积建模中。该项目为研究生和本科生的教育做出了贡献。研究成果被整合到研究生教学活动中并传播到科学界。这项急切的研究的具体目标是展示一种组合的超声引导自组装(DSA)和熔融沉积建模(FDM)制造工艺的概念证明,在该工艺中,纳米颗粒分散在熔融的FDM丝中,当其从FDM三维打印机喷嘴挤出时,被组织成特定的图案。为了实现这一目标,超声换能器被集成到FDM打印机的打印喷嘴中,以使得能够在熔化加载了纳米颗粒的FDM丝之后控制纳米颗粒的图案化/结构化。超声波场的数值模拟确定了获得用户指定的纳米颗粒图案所需的超声换能器操作参数,考虑了细丝和纳米颗粒的材料属性。这种制造工艺允许使用FDM制和使用超声DSA制造具有覆盖多个长度尺度的分层结构的任意几何形状的3D宏尺度纳米复合材料。研究的重点是制造纳米颗粒的圆形图案。该项目评估当FDM灯丝固化并沉积在衬底上时,环形图案是否保持不变。这一问题的解决为设计超声DSA/FDM组合制造平台提供了知识。该项目允许PI推进纳米复合材料、添加剂制造和先进制造方面的知识库。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fabricating polymer-matrix composite materials with aligned microfibers using ultrasound directed self-assembly and stereolithography
使用超声引导自组装和立体光刻技术制造具有排列微纤维的聚合物基复合材料
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Niendorf, Karl;Raeymaekers, Bart
  • 通讯作者:
    Raeymaekers, Bart
Bioinspired materials from extrinsically-controlled fabrication techniques
来自外部控制制造技术的仿生材料
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Naleway, S.E.;Porter, D.L.;Fernquist, J.;Yin, T.J.;Alexander, J.;Mroz, M.
  • 通讯作者:
    Mroz, M.
Extrinsic control of advanced manufacturing techniques for bioinspired materials
仿生材料先进制造技术的外在控制
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Naleway, S.E.;Porter, D.L.;Fernquist, J.;Yin, T.J.;Schmitz, M.;Hotz, E.;Alexander, J.;Mroz, M.
  • 通讯作者:
    Mroz, M.
Integrating ultrasound directed self-assembly and additive manufacturing to fabricate engineered materials
集成超声波引导自组装和增材制造来制造工程材料
The effect of medium viscosity and particle volume fraction on ultrasound directed self-assembly of spherical microparticles
介质粘度和颗粒体积分数对球形微粒超声定向自组装的影响
  • DOI:
    10.1063/5.0087303
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Noparast, S.;Guevara Vasquez, F.;Raeymaekers, B.
  • 通讯作者:
    Raeymaekers, B.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bart Raeymaekers其他文献

The effect of polyethylene creep on tibial insert locking screw loosening and back-out in prosthetic knee joints
  • DOI:
    10.1016/j.jmbbm.2014.06.002
  • 发表时间:
    2014-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Anthony P. Sanders;Bart Raeymaekers
  • 通讯作者:
    Bart Raeymaekers
Guest editorial: Special Issue on Artificial Intelligence and Emerging Computational Approaches for Tribology
  • DOI:
    10.1007/s40544-024-0883-6
  • 发表时间:
    2024-04-02
  • 期刊:
  • 影响因子:
    8.200
  • 作者:
    Zhinan Zhang;Shuaihang Pan;Bart Raeymaekers
  • 通讯作者:
    Bart Raeymaekers
3D ultrasound directed self-assembly of high aspect ratio particles: On the relationship between the number of transducers and their spatial arrangement
高纵横比粒子的3D超声定向自组装:换能器数量与其空间排列之间的关系
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4
  • 作者:
    M. Prisbrey;F. G. Vasquez;Bart Raeymaekers
  • 通讯作者:
    Bart Raeymaekers
Measuring and Simulating the Transient Packing Density During Ultrasound Directed Self‐Assembly and Vat Polymerization Manufacturing of Engineered Materials
测量和模拟工程材料的超声波引导自组装和还原聚合制造过程中的瞬态堆积密度
  • DOI:
    10.1002/admt.202301950
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    S. Noparast;F. Guevara Vasquez;Mathieu Francoeur;Bart Raeymaekers
  • 通讯作者:
    Bart Raeymaekers
Design of a dual stage actuator tape head with high-bandwidth track following capability

Bart Raeymaekers的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bart Raeymaekers', 18)}}的其他基金

FMSG: Cyber: Using a cloud-based platform to quantify the uncertainty of the process-structure-property-surface relationship for repeatable additive manufacturing of Inconel 718
FMSG:Cyber​​:使用基于云的平台量化 Inconel 718 可重复增材制造的工艺-结构-性能-表面关系的不确定性
  • 批准号:
    2328112
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Ultrasound directed self-assembly of non-periodic patterns of particles
超声引导非周期粒子自组装
  • 批准号:
    2246277
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Ultrasound Alignment of Carbon Nanotubes in a Polymer Medium for Additive Manufacturing of Nanocomposite Materials
用于纳米复合材料增材制造的聚合物介质中碳纳米管的超声排列
  • 批准号:
    1636208
  • 财政年份:
    2016
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
BRIGE: Patterned Microtexture to Create Fluid Film Lubrication at Low Sliding Velocities in Prosthetic Knee Joints
BRIGE:图案化微纹理可在假肢膝关节中以低滑动速度产生液膜润滑
  • 批准号:
    1227869
  • 财政年份:
    2012
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似海外基金

Manufacturing advanced nanocomposite membranes for selective lithium extraction
制造用于选择性锂提取的先进纳米复合膜
  • 批准号:
    571318-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Alliance Grants
Manufacturing advanced nanocomposite membranes for selective lithium extraction
制造用于选择性锂提取的先进纳米复合膜
  • 批准号:
    571318-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Alliance Grants
Cost-effective and Environmentally-friendly Manufacturing of Magnesium-based Hybrid Nanocomposite with High Engineering Performance for Next-Generation Automotive Applications
经济高效且环保地制造具有高工程性能的镁基混合纳米复合材料,用于下一代汽车应用
  • 批准号:
    RGPIN-2017-04921
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
Investigation of Nanocomposite Materials and Manufacturing
纳米复合材料及其制造的研究
  • 批准号:
    551537-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    University Undergraduate Student Research Awards
Mechanical performance of nanocomposite biomaterials formed by additive manufacturing
增材制造纳米复合生物材料的机械性能
  • 批准号:
    551838-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    University Undergraduate Student Research Awards
Cost-effective and Environmentally-friendly Manufacturing of Magnesium-based Hybrid Nanocomposite with High Engineering Performance for Next-Generation Automotive Applications
经济高效且环保地制造具有高工程性能的镁基混合纳米复合材料,用于下一代汽车应用
  • 批准号:
    RGPIN-2017-04921
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
Large-scale manufacturing of Large flexible nanocomposite polymer sensor(WrapSense)
大规模制造大型柔性纳米复合聚合物传感器(WrapSense)
  • 批准号:
    105611
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Collaborative R&D
Investigation of Nanocomposite Materials and Manufacturing
纳米复合材料及其制造的研究
  • 批准号:
    540581-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    University Undergraduate Student Research Awards
Cost-effective and Environmentally-friendly Manufacturing of Magnesium-based Hybrid Nanocomposite with High Engineering Performance for Next-Generation Automotive Applications
经济高效且环保地制造具有高工程性能的镁基混合纳米复合材料,用于下一代汽车应用
  • 批准号:
    RGPIN-2017-04921
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
Additive manufacturing of highly porous collagen/bioactive glass nanocomposite scaffolds
高孔隙胶原蛋白/生物活性玻璃纳米复合支架的增材制造
  • 批准号:
    503064-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 10万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了