MRI: Acquisition of High-Performance Computing Cluster for Research and Workforce Development at University of Cincinnati
MRI:收购辛辛那提大学用于研究和劳动力发展的高性能计算集群
基本信息
- 批准号:2018617
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will the support the acquisition of a high-performance computing (HPC) and high-speed storage system at the University of Cincinnati (UC). This instrument will meet the computing needs of UC researchers and scientists spanning a broad range of fields including, physics, chemistry, aerospace & mechanical engineering, computer science, bioinformatics, medicine, and digital humanities. The research projects enabled by the HPC system in these areas will advance fundamental science and contribute to national priorities in health and national security. This system will also serve as a launching facility for the development of novel algorithms, and initial and scalability testing of codes, which will then be ported to national supercomputing facilities. Over 117 faculty and students will immediately benefit from this equipment. In addition to scientific advancements and development of the next generation of HPC-enabled workforce, this project will provide opportunities for the training of HPC administrators and facilitators. Through participation in the Open Science Grid, the equipment will also enable the research activities of external users. This project will involve the participation of underrepresented groups through summer internships, and workshops at local inner-city schools. Further, this project will offer the possibility of exposing researchers in humanities to the benefits of HPC through collaboration between the Advanced Research Computing and the Digital Scholarship Centers at UC.The computing cluster will consist of Central Processing Units (CPU), Graphics Processing Units (GPU) and high-speed scratch storage to substantially enhance the capabilities of the Advanced Research Computing Center at UC and thereby support computational and data science researchers by providing HPC resources for large-scale scientific calculations, HTC for Monte Carlo type simulations, and GPUs for advanced analytics, artificial intelligence, and visualization, all of which will enable sophisticated and increasingly realistic modeling, simulation and data analysis. These research efforts based on molecular dynamics and quantum chemistry simulations, computational fluid dynamics, multi-universe stochastic models, and data-intensive, deep learning and graph convolutional neural networks, will advance our knowledge of physical & cyber-physical systems, chemical and mechanical behaviors of materials, the structure and origin of our universe and contribute to the development of innovative applications such as brain-inspired computing, effective personalized precision medicine for complex diseases, carbon-neutral combustion devices, hypersonic propulsion systems, multi-UAV autonomous systems, and smart cities. These objectives closely align with one of UC’s enterprise-level programs, the Digital Futures initiative.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将支持辛辛那提大学(UC)收购高性能计算(HPC)和高速存储系统。 该仪器将满足UC研究人员和科学家的计算需求,涵盖广泛的领域,包括物理,化学,航空航天机械工程,计算机科学,生物信息学,医学和数字人文。 HPC系统在这些领域实现的研究项目将推动基础科学的发展,并为国家在健康和国家安全方面的优先事项做出贡献。 这一系统还将作为开发新算法以及对代码进行初始测试和可扩展性测试的启动设施,然后将这些代码移植到国家超级计算设施。 超过117名教师和学生将立即受益于这些设备。 除了科学进步和下一代HPC支持的劳动力的发展外,该项目还将为HPC管理员和促进者提供培训机会。 通过参与开放科学网格,该设备还将使外部用户的研究活动成为可能。 这一项目将通过暑期实习和在当地市中心学校举办讲习班,让代表人数不足的群体参与。 此外,该项目将通过加州大学高级研究计算和数字奖学金中心之间的合作,为人文学科的研究人员提供接触HPC的可能性。计算集群将包括中央处理器(CPU),图形处理单元(GPU)和高性能加速暂存存储,以大幅增强加州大学高级研究计算中心的能力,从而支持计算和数据科学研究人员通过为大规模科学计算提供HPC资源,为Monte Carlo类型的模拟提供HTC,以及为高级分析、人工智能和可视化提供GPU,所有这些都将实现复杂且日益逼真的建模、模拟和数据分析。 这些研究工作基于分子动力学和量子化学模拟,计算流体动力学,多宇宙随机模型,以及数据密集型,深度学习和图形卷积神经网络,将推进我们对物理&网络物理系统,材料的化学和机械行为,我们宇宙的结构和起源,并有助于开发创新应用,如脑启发计算,针对复杂疾病的有效个性化精准医疗、碳中和燃烧装置、高超音速推进系统、多无人机自主系统和智慧城市。这些目标与加州大学的企业级计划之一--数字未来计划密切相关。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prashant Khare其他文献
Characterising the IETF through the lens of RFC deployment
从 RFC 部署的角度描述 IETF 的特征
- DOI:
10.1145/3487552.3487821 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Stephen McQuistin;Mladen Karan;Prashant Khare;C. Perkins;Gareth Tyson;Matthew Purver;P. Healey;Waleed Iqbal;Junaid Qadir;Ignacio Castro - 通讯作者:
Ignacio Castro
Performance Assessment of U-Net for Semantic Segmentation of Liquid Spray Images with Gaussian Blurring
U-Net 高斯模糊液体喷雾图像语义分割的性能评估
- DOI:
10.1109/icoco59262.2023.10397704 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Wei Lun Lim;Matthew Y. W. Teow;Richard T. K. Wong;Refat Khan Pathan;Sian Lun Lau;Chiung Ching Ho;Luis Bravo;Rahul Babu Koneru;Prashant Khare - 通讯作者:
Prashant Khare
Identifying and Processing Crisis Information from Social Media
- DOI:
10.21954/ou.ro.00010fda - 发表时间:
2020-02 - 期刊:
- 影响因子:0
- 作者:
Prashant Khare - 通讯作者:
Prashant Khare
Binary collision of CMAS droplets—Part II: Unequal-sized droplets
- DOI:
10.1557/jmr.2020.153 - 发表时间:
2020-12-01 - 期刊:
- 影响因子:2.900
- 作者:
Himakar Ganti;Prashant Khare;Luis Bravo - 通讯作者:
Luis Bravo
Effect of Mobility Models on the performance of Proactive and Reactive Routing Protocols
移动模型对主动式和被动式路由协议性能的影响
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Ajay Prakash Rai;Preeti Shakya;C. Jhansi;V. Srivastava;Prashant Khare - 通讯作者:
Prashant Khare
Prashant Khare的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
MRI: Track 1 Acquisition of a High-Performance Computing System at New Mexico Tech
MRI:新墨西哥理工学院高性能计算系统的第一轨道采购
- 批准号:
2320162 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Equipment: MRI: Track 2 Acquisition of a Novel Performance-Driven 3D Imaging System for Extremely Noisy Objects (NPIX)
设备: MRI:第 2 道采购新型性能驱动的 3D 成像系统,用于极噪物体 (NPIX)
- 批准号:
2319708 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Equipment: MRI: Track 2 Acquisition of a High-Performance Computing Cluster for Boosting Artificial Intelligence Enabled Science, Engineering, and Education in South Carolina
设备: MRI:第二轨道收购高性能计算集群,以促进南卡罗来纳州人工智能支持的科学、工程和教育
- 批准号:
2320292 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Equipment: MRI: Track 1 Acquisition of a High-Performance X-Ray Photoelectron Spectrometer for Research and Training
设备: MRI:轨道 1 采购高性能 X 射线光电子能谱仪用于研究和培训
- 批准号:
2320116 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Equipment: MRI: Track 1 Acquisition of Current Hardware to Enhance Computational Research on the ELSA High Performance Computing Cluster at The College of New Jersey
设备: MRI:第一轨道采购当前硬件,以增强新泽西学院 ELSA 高性能计算集群的计算研究
- 批准号:
2320244 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Equipment: MRI: Track 1 Acquisition of a high-performance computer cluster for computational biology
设备: MRI:轨道 1 获取用于计算生物学的高性能计算机集群
- 批准号:
2320846 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
MRI: Acquisition of a high-performance computing resource to enhance research and undergraduate education at the College of Staten Island
MRI:收购高性能计算资源以加强史坦顿岛学院的研究和本科教育
- 批准号:
2215760 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
MRI: Acquisition of a High-Performance Computational System for OAK Region to Enable Computing and Data Driven Discovery
MRI:为 OAK 地区采购高性能计算系统,以实现计算和数据驱动的发现
- 批准号:
2216084 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
MRI: Acquisition of High-Performance Computing Cluster for Research in Engineering, Science, and Technology
MRI:收购高性能计算集群用于工程、科学和技术研究
- 批准号:
2216335 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
MRI: Acquisition of a GPU-based High Performance Computing Instrumentation for Smart City Research at Cleveland State University
MRI:克利夫兰州立大学为智能城市研究采购基于 GPU 的高性能计算仪器
- 批准号:
2215388 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant