CC* Team: Oregon Big Data Research and Education Team

CC*团队:俄勒冈大数据研究与教育团队

基本信息

  • 批准号:
    2019161
  • 负责人:
  • 金额:
    $ 140万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Today, more than ever before, big data pervade every area of the life, environmental, biomedical, earth, marine, computational, physical, urban, and social sciences, as well as numerous other domains. Increasingly powerful computing technologies have opened the pathway for researchers to address major global challenges through use of large and heterogeneous data sets and through complex models and simulations. This project provides domain scientists, including research students, with the expertise and training needed to collaborate effectively with specialists in these advanced computational and statistical methodologies. The project also provides training and research experiences for students and instructors from small regional colleges, including Hispanic-serving and Native-American-serving institutions. To widely share best practices, it supports a community of practice. The project employs research and training staff (facilitators) with expertise in data integration, multi-modal data analytics and machine learning. These three related sets of methods enable the analysis of large complex data sets of different types or from different sources, which may or may not have been collected as part of a planned studies. Specifically, a four-person facilitation team is established across Oregon State University, the University of Oregon, and Portland State University. The interdisciplinary, cross institutional team will establish the tools and managements practices to serve the researchers in the state. The research facilitated by this project will lead to better understanding of earthquakes, diverse ecosystems, and plant and animal form and function. It supports development of faster computing systems, more secure energy systems, and improved environmental health. The data challenges posed by these application areas also motivate new foundational research in advanced data analytics and machine learning. The project also prepares a new generation of students from diverse backgrounds to enter the knowledge economy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
今天,大数据比以往任何时候都更加渗透到生命、环境、生物医学、地球、海洋、计算、物理、城市和社会科学以及许多其他领域的各个领域。日益强大的计算技术为研究人员通过使用大型和异构数据集以及通过复杂的模型和模拟来解决重大全球挑战开辟了道路。该项目为领域科学家,包括研究生,提供与这些高级计算和统计方法专家有效合作所需的专业知识和培训。该项目还为来自小型区域学院的学生和教师提供培训和研究经验,包括为西班牙裔和美国土著人服务的机构。为了广泛分享最佳做法,它支持一个实践社区。该项目雇佣了在数据集成、多模态数据分析和机器学习方面具有专业知识的研究和培训人员(促进者)。这三套相关的方法能够分析不同类型或不同来源的大型复杂数据集,这些数据集可能是作为计划研究的一部分收集的,也可能不是。具体而言,在俄勒冈州州立大学、俄勒冈州大学和波特兰州立大学之间建立了一个四人促进小组。跨学科,跨机构的团队将建立工具和管理实践,以服务于国家的研究人员。 该项目促进的研究将使人们更好地了解地震、不同的生态系统以及植物和动物的形态和功能。它支持开发更快的计算系统,更安全的能源系统和改善环境健康。这些应用领域带来的数据挑战也激发了高级数据分析和机器学习的新基础研究。该项目还为来自不同背景的新一代学生进入知识经济做好准备。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brent Kronmiller其他文献

Brent Kronmiller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: Multiple Team Membership (MTM) through Technology: A path towards individual and team wellbeing?
协作研究:通过技术实现多重团队成员 (MTM):通往个人和团队福祉的道路?
  • 批准号:
    2345652
  • 财政年份:
    2024
  • 资助金额:
    $ 140万
  • 项目类别:
    Standard Grant
Investigating the Impacts of Anthropomorphism on AI Perception: Moderated Mediation Effects of Openness to Experience and Team-member Exchange with AI as Teammate
调查拟人化对人工智能感知的影响:体验开放性和与人工智能作为队友的团队成员交流的调节中介效应
  • 批准号:
    24K00293
  • 财政年份:
    2024
  • 资助金额:
    $ 140万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Holistic Approach to Improve Learning and Motivation in Introductory Programming with Automated Grading, Web-based Team Support, and Game Development
通过自动评分、基于网络的团队支持和游戏开发提高入门编程学习和动机的整体方法
  • 批准号:
    2345097
  • 财政年份:
    2024
  • 资助金额:
    $ 140万
  • 项目类别:
    Standard Grant
HSI Implementation and Evaluation Project: Establishing a Peer-Led Team Learning Program at the College of Science and Engineering
HSI 实施和评估项目:在科学与工程学院建立同伴主导的团队学习计划
  • 批准号:
    2345162
  • 财政年份:
    2024
  • 资助金额:
    $ 140万
  • 项目类别:
    Standard Grant
Conference: Cyberinfrastructure Leadership Academy: Team Science and Grand Challenges
会议:网络基础设施领导学院:团队科学和重大挑战
  • 批准号:
    2414440
  • 财政年份:
    2024
  • 资助金额:
    $ 140万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiple Team Membership (MTM) through Technology: A path towards individual and team wellbeing?
协作研究:通过技术实现多重团队成员 (MTM):通往个人和团队福祉的道路?
  • 批准号:
    2345651
  • 财政年份:
    2024
  • 资助金额:
    $ 140万
  • 项目类别:
    Standard Grant
Enhancing Multidisciplinary Team Meetings via AI-Enabled Data Assimilation
通过人工智能支持的数据同化增强多学科团队会议
  • 批准号:
    IM240100224
  • 财政年份:
    2024
  • 资助金额:
    $ 140万
  • 项目类别:
    Mid-Career Industry Fellowships
Community Building and Team Science Support for the Global Centers Program
全球中心计划的社区建设和团队科学支持
  • 批准号:
    2419639
  • 财政年份:
    2024
  • 资助金额:
    $ 140万
  • 项目类别:
    Standard Grant
Truata - Red Team of PET Competition
Truata - PET 比赛红队
  • 批准号:
    900259
  • 财政年份:
    2023
  • 资助金额:
    $ 140万
  • 项目类别:
    Collaborative R&D
Collaborative Research: EPIIC: Expanding Team Capacity for High Impact and New Growth (ETCHING) Cohort
合作研究: EPIIC:扩大高影响力和新增长 (ETCHING) 队列的团队能力
  • 批准号:
    2331217
  • 财政年份:
    2023
  • 资助金额:
    $ 140万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了