CC* Integration-Large: Robust and Predictable Network Infrastructure for Wide-Area Hybrid Sensor Networks

CC* 大型集成:适用于广域混合传感器网络的稳健且可预测的网络基础设施

基本信息

项目摘要

Increased use of Internet-of-Things (IoT) sensor devices is revolutionizing science and engineering applications, such as smart cities and environmental hazard monitoring. These sensors are often deployed in remote and distributed environments and rely on complex data networks that use both wired and wireless communication to stream large volumes of data back for analysis and distribution. Design and management of these complex hybrid networks is a daunting task due to network capacity fluctuations and dynamic data flow characteristics. This project develops a new software-driven network infrastructure to help automate network management of these emerging hybrid sensor networks for science and public service.This project develops and deploys an operational Software-Defined Networking (SDN) network management and monitoring infrastructure for hybrid wide-area research networks spanning hundreds of kilometers in Nevada for distributed applications in wildfire, climate, and traffic safety. Current practices of inflexible network setup with limited monitoring capability struggles to satisfy ever-increasing science needs, such as on-demand data pipeline creation and quality-of-service satisfaction. Moreover, the project enhances network transparency through deployment of high-precision (i.e., port-, flow-, and packet-level) network monitoring and performance measurement (i.e., PerfSonar) nodes. The project implements a deep-learning-based anomaly detection mechanism to protect sensitive data from cyber attacks. Integrating SDN with high-precision monitoring into wide-area sensor networks has the potential to accelerate adoption of IoT devices in many science areas by addressing core hybrid WAN (wide-area network) challenges such as routing, troubleshooting, and anomaly detection. Developing these integrations now is critical, because hybrid WAN infrastructures (particularly in non-urban regions) will remain bandwidth-limited relative to data generation devices into the foreseeable future. This project allows University of Nevada, Reno (UNR) to continue leadership in wide-area research IoT systems, expand institutional platforms for hybrid-cloud operations, and scale up key products for communities as part of UNR's land-grant mission.Any data produced in the context of this project will be made available to the public and maintained throughout the duration of the project and beyond. Developed source code will initially be maintained in a private GitHub repository, which will be released at “https://github.com/UNR-HPN/SDNWideArea” periodically when the codebase becomes stable. The repository will be maintained as part of ongoing support operations by UNR cyberinfrastructure personnel assigned to the infrastructure at the close of the project. Performance monitoring in the project will be associated with regional dashboards as best practices dictate.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
物联网(IoT)传感器设备的使用越来越多,正在彻底改变科学和工程应用,例如智能城市和环境危害监测。这些传感器通常部署在远程和分布式环境中,并依赖于复杂的数据网络,这些网络使用有线和无线通信将大量数据流回进行分析和分发。由于网络容量的波动和动态数据流的特点,这些复杂的混合网络的设计和管理是一项艰巨的任务。该项目开发了一个新的软件驱动的网络基础设施,以帮助这些新兴的混合传感器网络的自动化网络管理,用于科学和公共服务。该项目开发和部署了一个可操作的软件定义网络(SDN)网络管理和监控基础设施,用于内华达州数百公里的混合广域研究网络,用于野火,气候和交通安全的分布式应用。目前的做法是不灵活的网络设置与有限的监控能力,努力满足不断增长的科学需求,如按需数据管道创建和服务质量的满意度。此外,该项目通过部署高精度(即,端口级、流级和分组级)网络监控和性能测量(即,PerfSonar)节点。该项目实现了基于深度学习的异常检测机制,以保护敏感数据免受网络攻击。将SDN与高精度监控集成到广域传感器网络中,通过解决路由、故障排除和异常检测等核心混合WAN(广域网)挑战,有可能加速物联网设备在许多科学领域的采用。现在开发这些集成至关重要,因为在可预见的未来,相对于数据生成设备,混合WAN基础设施(特别是在非城市地区)的带宽仍然有限。该项目使内华达州大学里诺分校(UNR)能够继续在广域研究物联网系统方面保持领先地位,扩展混合云运营的机构平台,并为社区扩展关键产品,这是UNR土地赠与使命的一部分。在该项目背景下产生的任何数据都将向公众提供,并在整个项目期间及之后进行维护。开发的源代码最初将在一个私有的GitHub存储库中维护,当代码库变得稳定时,该存储库将定期在“https://github.com/UNR-HPN/SDNWideArea“上发布。该储存库将作为项目结束时分配给该基础设施的UNR网络基础设施人员持续支持业务的一部分进行维护。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Avoiding data loss and corruption for file transfers with Fast Integrity Verification
  • DOI:
    10.1016/j.jpdc.2021.02.002
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ahmed Alhussen;Engin Arslan
  • 通讯作者:
    Ahmed Alhussen;Engin Arslan
Imposters Among Us: A Supervised Learning Approach to Anomaly Detection in IoT Sensor Data
我们身边的冒名顶替者:物联网传感器数据异常检测的监督学习方法
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Das, T.;Shukla, R.M.;Sengupta, S.
  • 通讯作者:
    Sengupta, S.
Learning Transfers via Transfer Learning
通过迁移学习进行学习迁移
Bandwidth and Congestion Aware Routing for Wide-Area Hybrid Networks
INT Based Network-Aware Task Scheduling for Edge Computing
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shamik Sengupta其他文献

2020 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2020, Austin, TX, USA, March 23-27, 2020
2020 IEEE 国际普适计算和通信研讨会研讨会,PerCom Workshops 2020,美国德克萨斯州奥斯汀,2020 年 3 月 23-27 日
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuan Lai;Gonzalo J. Martinez;Stephen M. Mattingly;Shayan Mirjafari;Subigya Nepal;Andrew T Campbell;A. Dey;Aaron D. Striegel;Marco Jansen;Fatjon Seraj;Wei Wang;P. Havinga;Kaijie Zhang;Zhiwen Yu;Dong Zhang;Zhu Wang;Bin Guo;Julian Graf;Katrin Neubauer;Sebastian Fischer;Rudolf Hackenberg;Elliott Wen;Gerald Weber;Javier Rojo;Daniel Flores;J. García;J. M. Murillo;Javier Berrocal;Mingyu Hou;Tianyu Kang;Li Guo;Edison Thomaz;Beichen Yang;Min Sun;Xiaoyan Hong;Xiaoming Guo;P. Barsocchi;A. Crivello;Michele Girolami;Fabio Mavilia;Vivek Chandel;Shivam Singhal;Avik Ghose;Tetsushi Matsuda;Toru Inada;Susumu Ishihara;Luay Alawneh;Belal Mohsen;Mohammad Al;Ahmed S. Shatnawi;Mahmoud Al;N. B. Rabah;Eoin Brophy;W. Muehlhausen;A. Smeaton;Tomás E. Ward;S. Maskey;S. Badsha;Shamik Sengupta;Ibrahim Khalil;Stanisław Saganowski;Anna Dutkowiak;A. Dziadek;Maciej Dziezyc;Joanna Komoszynska;Weronika Michalska;Adam G. Polak;Michal Ujma;Przemysław Kazienko;Nurullah Karakoç;Anna Scaglione;Fatemeh Mirzaei;Jonathan Lam;Roberto Manduchi;R. K. Ramakrishnan;R. Gavas;Lalit Venkata Subramaninan Viraraghavan;Kumar Hissaria;Arpan Pal;P. Balamuralidhar;S. Ditton;Ali Tekeoglu;K. Bekiroglu;Seshadhri Srinivasan;E. Tonkin;Miquel Perello Nieto;Haixia Bi;Antonis Vafeas;Yuri Tani;M. Garcia;A. Konios;M. A. Mustafa;C. Nugent;G. Morrison;Noah Sieck;Cameron Calpin;Mohammad S. Almalag;M. M. Sandhu;Kai Geissdoerfer;Sara Khalifa;Raja Jurdak;Marius Portmann;Brano Kusy;Alwyn Burger;Chao Qian;Gregor Schiele;Domenik Helms;Peter Zdankin;Marian Waltereit;V. Matkovic;Torben Weis;Syafiq Al Atiiq;Christian Gehrmann;Jae Woong Lee;Sumi Helal;Mathias Mormul;Christoph Stach;L. Krupp;G. Bahle;Agnes Gruenerbl;P. Lukowicz;Nicholas Handaja;Brent Lagesse;Clémentine Gritti;Dennis Przytarski;Bernhard Mitschang;Yeongjun Jeon;Kukho Heo;Soon Ju Kang;Sandeep Biplav Srivastava;Singh Sandha;Vaskar Raychoudhury;Sukanya Randhawa;V. Kapoor;Anmol Agrawal;Young D. Kwon;Kirill A. Shatilov;Lik;Serkan Kumyol;Kit;Yui;Pan Hui;Brittany Lewis;Joshua Hebert;Krishna Venkatasubramanian;Matthew Provost;Kelly Charlebois;Kristina Yordanova;Albert Hein;T. Kirste;Lien;Jun;Wei;Casper Van Gheluwe;I. Šemanjski;Suzanne Hendrikse;S. Gautama;Furqan Jameel;Zheng Chang;Riku Jäntti;Sergio Laso;M. Linaje;Ikram Ullah;N. Meratnia;Steven M. Hernandez;Eyuphan Bulut;Amiah Gooding;Matthew Martin;Maxwell Minard;Smruthi Sandhanam;Travis Stanger;Yana Alexandrova;Ashfaq Khokhar;Goce Trajcevski;Utsav Goswami;Kevin Wang;Gabriel Nguyen;Federico Montori;L. Bedogni;Gianluca Iselli;L. Bononi;Saptaparni Kumar;Haochen Pan;Roger Wang;Lewis Tseng;K. Hirayama;S. Saiki;Masahide Nakamura;Kiyoshi Yasuda;Samy El;Ismail Arai;Ahmad Salman;B. B. Park;Yuya Sano;Yuito Sugata;Teruhiro Mizumoto;H. Suwa;K. Yasumoto;P. Kouris;Marietta Sionti;Chrysovalantis Korfitis;Stella Markantonatou;Naima Khan;Nirmalya Roy;D. Jaiswal;D. Chatterjee;Ramesh Kumar;Ana Cristina Franco;Da Silva;Pascal Hirmer;Jan Schneider;Seda Ulusal;Matheus Tavares;Tomokazu Matsui;Kosei Onishi;Shinya Misaki;Manato Fujimoto;Hayata Satake;Yuki Kobayashi;Ryotaro Tani;Hiroshi Shigeno;Avijoy Chakma;Abu Zaher;Md Faridee;M Sajjad Hossain;Cleo Forman;Pablo Thiel;Raymond Ptucha;Miguel Dominguez;Cecilia Ovesdotter Alm;S. Mozgai;Arno Hartholt;Albert Rizzo
  • 通讯作者:
    Albert Rizzo
Poisoning the Well: Adversarial Poisoning on ML-based Software-defined Network Intrusion Detection Systems
毒井:基于机器学习的软件定义网络入侵检测系统的对抗性中毒
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tapadhir Das;R. Shukla;Shamik Sengupta
  • 通讯作者:
    Shamik Sengupta
Performance analysis of CR-honeynet to prevent jamming attack through stochastic modeling
  • DOI:
    10.1016/j.pmcj.2015.04.004
  • 发表时间:
    2015-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Suman Bhunia;Shamik Sengupta;Felisa Vázquez-Abad
  • 通讯作者:
    Felisa Vázquez-Abad
N-Player Cybersecurity Game Theory Model in Power Grids
电网中的N人网络安全博弈论模型
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew S. Egan;Shamik Sengupta
  • 通讯作者:
    Shamik Sengupta
Systematic Analysis of Individuals’ Perspectives on Cybersecurity Using Q Methodology: Implications for Research and Application in Behavior Analysis
使用 Q 方法对个人对网络安全的看法进行系统分析:对行为分析研究和应用的启示
  • DOI:
    10.1007/s42822-024-00174-5
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Rita Olla;Ramona A. Houmanfar;Shamik Sengupta;Emily M. Hand;Sushil J. Louis
  • 通讯作者:
    Sushil J. Louis

Shamik Sengupta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shamik Sengupta', 18)}}的其他基金

RET Site: Research Experiences in Cybersecurity for Nevada Teachers (RECNT)
RET 网站:内华达州教师网络安全研究经验 (RECNT)
  • 批准号:
    2302187
  • 财政年份:
    2023
  • 资助金额:
    $ 99.86万
  • 项目类别:
    Standard Grant
CyberCorps Scholarship for Service: Preparing an Interdisciplinary Next-Gen Cybersecurity Workforce
Cyber​​Corps 服务奖学金:培养跨学科的下一代网络安全劳动力
  • 批准号:
    2146146
  • 财政年份:
    2022
  • 资助金额:
    $ 99.86万
  • 项目类别:
    Continuing Grant
RET Site: Research Experiences in Cybersecurity for Nevada Teachers (RECNT)
RET 网站:内华达州教师网络安全研究经验 (RECNT)
  • 批准号:
    1855159
  • 财政年份:
    2019
  • 资助金额:
    $ 99.86万
  • 项目类别:
    Standard Grant
CICI: CE: Implementing CYBEX-P: Helping Organizations to Share with Privacy Preservation
CICI:CE:实施CYBEX-P:帮助组织共享隐私保护
  • 批准号:
    1739032
  • 财政年份:
    2018
  • 资助金额:
    $ 99.86万
  • 项目类别:
    Standard Grant
Longitudinal Injection of Interdisciplinary Cybersecurity Awareness into Engineering Curricula
将跨学科网络安全意识纵向注入工程课程
  • 批准号:
    1723814
  • 财政年份:
    2017
  • 资助金额:
    $ 99.86万
  • 项目类别:
    Standard Grant
TWC SBE: Small: Establishing market based mechanisms for CYBer security information EXchange (CYBEX)
TWC SBE:小型:建立基于市场的 CYBer 安全信息交换(CYBEX)机制
  • 批准号:
    1528167
  • 财政年份:
    2015
  • 资助金额:
    $ 99.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Capacity building in Cybersecurity-literacy: An inter-disciplinary approach
合作研究:网络安全素养能力建设:跨学科方法
  • 批准号:
    1516724
  • 财政年份:
    2015
  • 资助金额:
    $ 99.86万
  • 项目类别:
    Standard Grant
RET Site: Cyber Security Initiative for Nevada Teachers (CSINT)
RET 网站:内华达州教师网络安全计划 (CSINT)
  • 批准号:
    1542465
  • 财政年份:
    2015
  • 资助金额:
    $ 99.86万
  • 项目类别:
    Standard Grant
CAREER: Survivability and Selfcoexistence in the Battle of Cognitive Radio Network Societies
职业:认知无线电网络社会之战中的生存性和自我共存
  • 批准号:
    1346600
  • 财政年份:
    2013
  • 资助金额:
    $ 99.86万
  • 项目类别:
    Continuing Grant
CAREER: Survivability and Selfcoexistence in the Battle of Cognitive Radio Network Societies
职业:认知无线电网络社会之战中的生存性和自我共存
  • 批准号:
    1149920
  • 财政年份:
    2012
  • 资助金额:
    $ 99.86万
  • 项目类别:
    Continuing Grant

相似海外基金

CC*Integration-Large: Programmable Network Testbed for 400 Gbps Science DMZ
CC*Integration-Large:400 Gbps Science DMZ 的可编程网络测试台
  • 批准号:
    2346605
  • 财政年份:
    2024
  • 资助金额:
    $ 99.86万
  • 项目类别:
    Standard Grant
CC* Integration-Large: Husker-Net: Open Nebraska End-to-End Wireless Edge Networks
CC* 大型集成:Husker-Net:开放内布拉斯加州端到端无线边缘网络
  • 批准号:
    2321699
  • 财政年份:
    2023
  • 资助金额:
    $ 99.86万
  • 项目类别:
    Standard Grant
CC* Integration-Large: An Extensible Internet for Science Applications and Beyond
CC* Integration-Large:用于科学应用及其他应用的可扩展互联网
  • 批准号:
    2201489
  • 财政年份:
    2022
  • 资助金额:
    $ 99.86万
  • 项目类别:
    Standard Grant
CC* Integration-Large: Prototyping a Secure Distributed Storage Infrastructure for Accelerating Big Science
CC* Integration-Large:构建安全分布式存储基础设施原型以加速大科学发展
  • 批准号:
    2126148
  • 财政年份:
    2021
  • 资助金额:
    $ 99.86万
  • 项目类别:
    Standard Grant
CC* Integration-Large: In-Network Distributed Infrastructure for Advanced Network Applications
CC* 大型集成:用于高级网络应用的网内分布式基础设施
  • 批准号:
    2126266
  • 财政年份:
    2021
  • 资助金额:
    $ 99.86万
  • 项目类别:
    Standard Grant
CC* Integration-Large: (BLUE) Software-Defined CyberInfrastructure to enable data-driven smart campus applications
CC* Integration-Large:(蓝色)软件定义的网络基础设施,支持数据驱动的智能校园应用
  • 批准号:
    2126291
  • 财政年份:
    2021
  • 资助金额:
    $ 99.86万
  • 项目类别:
    Standard Grant
CC* Integration-Large: MAINTLET: Advanced Sensory Network Cyber-Infrastructure for Smart Maintenance in Campus Scientific Laboratories
CC* 大型集成:MAINTLET:用于校园科学实验室智能维护的先进传感网络网络基础设施
  • 批准号:
    2126246
  • 财政年份:
    2021
  • 资助金额:
    $ 99.86万
  • 项目类别:
    Standard Grant
CC* Integration-Large: Bringing Code to Data: A Collaborative Approach to Democratizing Internet Data Science
CC* Integration-Large:将代码带入数据:互联网数据科学民主化的协作方法
  • 批准号:
    2126281
  • 财政年份:
    2021
  • 资助金额:
    $ 99.86万
  • 项目类别:
    Standard Grant
CC* Integration-Large: Democratizing Networking Research in the Era of AI/ML
CC* 大型集成:AI/ML 时代的网络研究民主化
  • 批准号:
    2126327
  • 财政年份:
    2021
  • 资助金额:
    $ 99.86万
  • 项目类别:
    Standard Grant
CC*: Integration-Large: POWWOW: Software-Defined Infrastructure for Wireless, Edge Cybersecurity Testbeds
CC*:大型集成:POWWOW:用于无线、边缘网络安全测试台的软件定义基础设施
  • 批准号:
    2018912
  • 财政年份:
    2020
  • 资助金额:
    $ 99.86万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了