Collaborative Research: SaTC: CORE: Small: Understanding and Taming Deterministic Model Bit Flip attacks in Deep Neural Networks

协作研究:SaTC:核心:小型:理解和驯服深度神经网络中的确定性模型位翻转攻击

基本信息

项目摘要

Deep neural network (DNN) is widely deployed for a variety of decision-making tasks such as access control, medical diagnostics, and autonomous driving. Compromise of DNN models can severely disrupt inference behavior, leading to catastrophic outcomes for security and safety-sensitive applications. While a tremendous amount of efforts have been made to secure DNNs against external adversaries (e.g., adversarial examples), internal adversaries that tamper DNN model integrity through exploiting hardware threats (i.e., fault injection attacks) can raise unprecedented concerns. This project aims to offer insights into DNN security issues due to hardware-based fault attacks, and explore ways to promote the robustness and security of future deep learning system against such internal adversaries. This project targets one critical research topic, namely securing deep learning systems against hardware-based model tampering. Recent advances in hardware fault attacks (e.g., rowhammer) can deterministically inject faults to DNN models, causing bit flips in key DNN parameters including model weights. Such threats can be extremely dangerous as they could potentially enable malicious manipulation of prediction outcomes in the inference stage by the adversary. The project seeks to systematically understand the practicality and severity of DNN model bit flip attacks in real systems and investigate software/architecture level protection techniques to secure DNNs against internal tampering. The study focuses on quantized DNNs which exhibit higher robustness against model tampering. This project will incorporate the following research efforts: (1) Investigate the vulnerability of quantized DNNs to deterministic bit flipping of model weights concerning various attack objectives; (2) Explore algorithmic approaches to enhance the intrinsic robustness of quantized DNN models; (3) Design effective and efficient system and architecture level defense mechanisms to comprehensively defeat DNN model bit flip attacks. This project will result in the dissemination of shared data, attack artifacts, algorithms and tools to the broader hardware security and AI security community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度神经网络(DNN)被广泛应用于各种决策任务,如访问控制、医疗诊断和自动驾驶。DNN模型的漏洞会严重扰乱推理行为,导致安全和安全敏感应用程序的灾难性后果。虽然已经做出了大量的努力来保护DNN免受外部对手(例如对抗性示例)的攻击,但通过利用硬件威胁(即故障注入攻击)来篡改DNN模型完整性的内部对手可能会引起前所未有的担忧。该项目旨在对基于硬件的故障攻击导致的DNN安全问题提供见解,并探索如何提高未来深度学习系统针对此类内部对手的健壮性和安全性。该项目针对一个关键的研究课题,即保护深度学习系统免受基于硬件的模型篡改。硬件故障攻击(例如Rowhammer)的最新进展可以确定地向DNN模型注入故障,导致包括模型权重在内的关键DNN参数中的比特翻转。这种威胁可能是极其危险的,因为它们可能会使对手在推断阶段恶意操纵预测结果。该项目旨在系统地了解DNN模型比特翻转攻击在实际系统中的实用性和严重性,并研究软件/体系结构级别的保护技术,以保护DNN免受内部篡改。研究的重点是量化DNN,它对模型篡改表现出更高的鲁棒性。本项目将包括以下研究工作:(1)研究量化DNN对不同攻击目标下模型权值确定性比特翻转的脆弱性;(2)探索增强量化DNN模型内在稳健性的算法途径;(3)设计有效的系统和体系结构层防御机制,全面抵御DNN模型比特翻转攻击。该项目将导致向更广泛的硬件安全和人工智能安全社区传播共享数据、攻击文物、算法和工具。该奖项反映了NSF的法定使命,并已通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Feasibility of Training-time Trojan Attacks through Hardware-based Faults in Memory
LADDER: Architecting Content and Location-aware Writes for Crossbar Resistive Memories
T-BFA: Targeted Bit-Flip Adversarial Weight Attack
Seeds of SEED: NMT-Stroke: Diverting Neural Machine Translation through Hardware-based Faults
Clairvoyance: Exploiting Far-field EM Emanations of GPU to "See" Your DNN Models through Obstacles at a Distance
  • DOI:
    10.1109/spw54247.2022.9833894
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sisheng Liang;Zihao Zhan;Fan Yao;Long Cheng;Zhenkai Zhang
  • 通讯作者:
    Sisheng Liang;Zihao Zhan;Fan Yao;Long Cheng;Zhenkai Zhang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fan Yao其他文献

Mean field study of a propagation-turnover lattice model for the dynamics of histone marking
组蛋白标记动力学传播-周转晶格模型的平均场研究
  • DOI:
    10.1007/s11433-016-0359-1
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fan Yao;Fangting Li;Tiejun Li
  • 通讯作者:
    Tiejun Li
Facile Solid-State Chemical Synthesis of Novel Ternary Lanthanide Complexes at Room Temperature
室温下简便的固态化学合成新型三元镧系元素配合物
JOP-alarm: Detecting jump-oriented programming-based anomalies in applications
JOP-alarm:检测应用程序中基于跳转的编程异常
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fan Yao;Jie Chen;Guru Venkataramani
  • 通讯作者:
    Guru Venkataramani
Xenotropic and polytropic retrovirus receptor 1 (XPR1) promotes progression of tongue squamous cell carcinoma (TSCC) via activation of NF-κB signaling
  • DOI:
    10.1186/s13046-019-1155-6
  • 发表时间:
    2019-04-17
  • 期刊:
  • 影响因子:
    12.800
  • 作者:
    Wei-chao Chen;Qiu-li Li;Qimei Pan;Hua-yong Zhang;Xiao-yan Fu;Fan Yao;Jian-ning Wang;An-kui Yang
  • 通讯作者:
    An-kui Yang
Watts-inside: A hardware-software cooperative approach for Multicore Power Debugging
Watts-inside:用于多核电源调试的软硬件协作方法
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jie Chen;Fan Yao;Guru Venkataramani
  • 通讯作者:
    Guru Venkataramani

Fan Yao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fan Yao', 18)}}的其他基金

CAREER: Understanding and Ensuring Secure-by-design Microarchitecture in Modern Era of Computing
职业:理解并确保现代计算时代的安全设计微架构
  • 批准号:
    2340777
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
CNS Core: Small: Towards Secure-By-Design Integration of Emerging Non-Volatile Memory in Future Systems
CNS 核心:小型:在未来系统中实现新兴非易失性存储器的安全设计集成
  • 批准号:
    2008339
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

复杂电子产品超精密加工及检测关键技术研究与应用
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于合成生物学的动物底盘品种优化及中试应用研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
运用组学整合技术探索萆薢分清散联合化疗治疗晚期胰腺癌的临床研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
九里香等提取物多靶向制剂抗肺癌的作用及机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
升血小板方治疗原发免疫性血小板减少症的临床研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
八髎穴微波热疗在女性膀胱过度活动症治疗中的价值研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于 miR-455-5p 介导的氧化应激机制探讨糖尿病视网膜病变中医分型治疗的临床研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于 UPLC-Q-TOF-MS/MS 分析的 异功散活性成分评价及提取工艺研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
无创电针对于痉挛型双瘫脑 瘫患儿的有效性与安全性研究:一项随机 单盲前瞻性队列研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
弹压式手法与体外冲击波治疗肱骨外上髁炎的对比研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330941
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
  • 批准号:
    2413046
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
  • 批准号:
    2312057
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Investigation of Naming Space Hijacking Threat and Its Defense
协作研究:SaTC:核心:小型:命名空间劫持威胁及其防御的调查
  • 批准号:
    2317830
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
  • 批准号:
    2318843
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了