Improving Student Learning in Power Engineering
提高学生在电力工程方面的学习
基本信息
- 批准号:2021470
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to serve the national interest by improving student learning in power engineering to include the new technologies being used in the power industry. Power engineering is a field of electrical engineering that focuses on the structures and processes needed to generate, transmit, and use electric power. Today’s power engineers require multi-disciplinary engineering knowledge to manage an increasingly complex power grid. For example, the power grid includes a growing amount of renewable energy resources, as well as more digital devices, information technology tools, and sensors. To address the need to align power engineering education with the power industry’s needs, the project team will develop and assess a set of active learning modules. These modules will be integrated into existing power engineering courses and focus on Smart Energy Management Systems. The modules will include hands-on laboratory experiences, case studies, and interactive simulations. The modules will help students learn how to model power systems, solve forecasting problems for power systems, and use data analytics to characterize power systems. The electric power industry is a critical part of the nation’s infrastructure and touches the lives of everyone. Improving students’ understanding of modern electric power systems will help ensure the integrity and performance of the nation’s electric power grid.The goal of this project is to improve power engineering education by (i) developing active learning experiences that incorporate real world problems in modern power systems, and (ii) integrating issues, solutions, and emerging trends in the area of Smart Energy Management Systems, specifically targeting power distribution systems, renewable energy sources, and intelligent energy forecasting. The design of the active learning modules will be guided by a situated learning framework, using case-based evaluations of simulated data from real-world power system problems to engage students in authentic forecasting and data analytics. This project will address the following research questions: 1) Do students exposed to situated learning develop a more comprehensive understanding of energy management, integrated power system analysis, and data analytics that is relevant for emerging challenges in power systems? and 2) Do they take greater account of context and community? To answer these questions, student learning will be measured using pre- and post-tests for the modules. Formative assessment using a situated learning survey and student interviews will be used to improve the modules. A workshop will be held to disseminate project results to the power engineering education community. The NSF IUSE: EHR Program supports research and development projects to improve the effectiveness of STEM education for all students. Through the Engaged Student Learning track, the program supports the creation, exploration, and implementation of promising practices and tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过改善学生在电力工程方面的学习来服务于国家利益,包括电力行业中使用的新技术。 电力工程是电气工程的一个领域,专注于发电,传输和使用电力所需的结构和过程。 今天的电力工程师需要多学科的工程知识来管理日益复杂的电网。 例如,电网包括越来越多的可再生能源,以及更多的数字设备,信息技术工具和传感器。为了满足电力工程教育与电力行业需求的一致性,项目团队将开发和评估一套主动学习模块。 这些模块将被整合到现有的电力工程课程,并专注于智能能源管理系统。 这些模块将包括动手实验室经验,案例研究和交互式模拟。 这些模块将帮助学生学习如何建模电力系统,解决电力系统的预测问题,并使用数据分析来表征电力系统。电力行业是国家基础设施的重要组成部分,关系到每个人的生活。提高学生对现代电力系统的理解将有助于确保国家电网的完整性和性能。该项目的目标是通过以下方式改善电力工程教育:(i)开发主动学习体验,将现代电力系统中的真实的世界问题纳入其中,以及(ii)整合智能能源管理系统领域的问题、解决方案和新兴趋势专门针对配电系统、可再生能源和智能能源预测。主动学习模块的设计将以情境学习框架为指导,使用基于案例的模拟数据评估,从现实世界的电力系统问题,让学生参与真实的预测和数据分析。该项目将解决以下研究问题:1)暴露于情境学习的学生是否对能源管理,综合电力系统分析和数据分析有更全面的了解,这与电力系统中出现的挑战有关?2)他们是否更多地考虑了背景和社区?为了回答这些问题,学生的学习将使用模块的前测试和后测试进行测量。将使用情境学习调查和学生访谈进行形成性评估,以改进这些模块。将举办一个讲习班,向电力工程教育界传播项目成果。NSF IUSE:EHR计划支持研究和开发项目,以提高所有学生STEM教育的有效性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Leveraging Distributed EVs and PVs to Assess Networked Microgrids Resilience Against Extreme Weather Event
- DOI:10.1109/pesgm48719.2022.9917224
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Orlando Quezada Simental;P. Mandal;Eric Galvan;Zongjie Wang
- 通讯作者:Orlando Quezada Simental;P. Mandal;Eric Galvan;Zongjie Wang
Unsupervised Hybrid Deep Generative Models for Photovoltaic Synthetic Data Generation
- DOI:10.1109/pesgm46819.2021.9637844
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Dan A. Rosa de Jesús;P. Mandal;T. Senjyu;S. Kamalasadan
- 通讯作者:Dan A. Rosa de Jesús;P. Mandal;T. Senjyu;S. Kamalasadan
Efficiency Contingency Factors for Commercial EVs Optimal Centralized Charging Stations
商用电动汽车的效率应急因素 最佳集中充电站
- DOI:10.1109/pesgm52003.2023.10252586
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Avila, Antonio;Mandal, Paras
- 通讯作者:Mandal, Paras
Implementation of Battery EVs and BESS into RAPSim Software to Enrich Power Engineering Education in DER-Integrated Distribution Systems
在 RAPSim 软件中实施电池电动汽车和 BESS,以丰富 DER 集成配电系统中的电力工程教育
- DOI:10.1109/naps52732.2021.9654476
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Newbolt, Travis M.;Mandal, Paras;Wang, Hongjie
- 通讯作者:Wang, Hongjie
Assessing Student Perceptions of Emerging Concepts in Power & Energy Systems via Concept Maps: Rubric Development
评估学生对新兴权力概念的看法
- DOI:10.1109/fie49875.2021.9637297
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Cecchi, Valentina;Smith-Orr, Courtney;Atchison, Forest;Kamalasadan, Sukumar;Mandal, Paras;Lopez, Inez
- 通讯作者:Lopez, Inez
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paras Mandal其他文献
Independent Energy Storage Systems can Minimize Uncertainty of Profit for Retailers in ISO Market
独立储能系统可以最大限度地减少ISO市场零售商利润的不确定性
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Harun Or Rashid Howlader;Homeyra Akter;Ahmed Yousuf Saber;Paras Mandal;Narayanan Krishna;Tomonobu Senjyu - 通讯作者:
Tomonobu Senjyu
MPC-based robust optimization of smart apartment building considering uncertainty for conservative reduction
- DOI:
10.1016/j.enbuild.2024.114461 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:
- 作者:
Shinya Yamamoto;Masahiro Furukakoi;Akie Uehara;Alexey Mikhaylov;Paras Mandal;Tomonobu Senjyu - 通讯作者:
Tomonobu Senjyu
Performance Evaluation of Different Optimization Algorithms for Power Demand Forecasting Applications in a Smart Grid Environment
- DOI:
10.1016/j.procs.2012.09.078 - 发表时间:
2012-01-01 - 期刊:
- 影响因子:
- 作者:
Ashraf Ul Haque;Paras Mandal;Julian Meng;Ricardo L. Pineda - 通讯作者:
Ricardo L. Pineda
Model predictive control based optimal operation of smart city
- DOI:
10.1016/j.scs.2024.105759 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:
- 作者:
Takuma Ishibashi;Masahiro Furukakoi;Akie Uehara;Hasan Masrur;Ahmed Rashwan;Narayanan Krishna;Paras Mandal;Hiroshi Takahashi;Tomonobu Senjyu - 通讯作者:
Tomonobu Senjyu
Sizing and Operation Optimization for Renewable Energy facilities with Demand Response in Micro-grid
微电网中具有需求响应的可再生能源设施的规模和运行优化
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Makoto Sugimura;Tomonobu Senjyu;Narayanan Krishna;Paras Mandal;Mamdouh Abdel-Akher;Ashraf M. Hemeida - 通讯作者:
Ashraf M. Hemeida
Paras Mandal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Improving STEM Student Success through the Integration of Learning Assistants and Co-requisite Models in First-year Courses
通过在一年级课程中整合学习助手和必备模型来提高 STEM 学生的成功
- 批准号:
2315453 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Improving Student Learning Outcomes in Computer Science Theory Courses Using Conceptual Models
协作研究:使用概念模型提高计算机科学理论课程中学生的学习成果
- 批准号:
2135438 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Improving Student Learning Outcomes in Computer Science Theory Courses Using Conceptual Models
协作研究:使用概念模型提高计算机科学理论课程中学生的学习成果
- 批准号:
2135431 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Improving Student Learning in Organic Chemistry Using Chemical Reaction Simulations
合作研究:利用化学反应模拟提高学生在有机化学方面的学习
- 批准号:
2120871 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Improving Student Learning in Organic Chemistry Using Chemical Reaction Simulations
合作研究:利用化学反应模拟提高学生在有机化学方面的学习
- 批准号:
2121023 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Improving Student Learning Using a Three-Dimensional Immersive Learning Environment for Foundational Engineering Concepts
使用三维沉浸式学习环境改善学生的基础工程概念学习
- 批准号:
2141984 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
ExplainIt: Improving Student Learning with Explanation-based Classroom Response Systems
ExplainIt:通过基于解释的课堂响应系统改善学生的学习
- 批准号:
2111216 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Improving Student Learning While Decreasing Bias in Teaching Through Simulation
通过模拟改善学生学习,同时减少教学偏差
- 批准号:
2118849 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Social and Interactive Learning at Community Colleges: Investigating Data-driven Feedback for Improving Student Outcomes with Project Based Learning
社区学院的社交和互动学习:调查数据驱动的反馈,以通过基于项目的学习提高学生的成绩
- 批准号:
2111305 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
ExplainIt: Improving Student Learning with Explanation-based Classroom Response Systems
ExplainIt:通过基于解释的课堂响应系统改善学生的学习
- 批准号:
2111473 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Standard Grant