Accurate Linearization and Control of Non-linear Physical Systems using Increased Variables

使用增加的变量对非线性物理系统进行精确线性化和控制

基本信息

  • 批准号:
    2021625
  • 负责人:
  • 金额:
    $ 47.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Advanced control systems, such as self-driving cars, autonomous robots, and bio-reactors, exhibit complex behaviors, which do not follow simple proportional rules and linear relationships. Control of those non-linear systems remains a challenge for engineers in many industrial sectors. This research aims to reduce a complex, nonlinear system to a linear system while retaining the original nonlinear behaviors. Once converted to a linear system, control design becomes easier and computational complexity significantly reduces. This advantageous result is made possible by representing the system with more variables than we usually use. While a traditional description using a limited number of variables leads to non-linearity, this new method using more variables allows one to deal with non-linearity in a linear domain. With this new method, challenging non-linear control problems can be made tractable, and simple, and practical solutions may be created for a broad class of control systems and products.According to Koopman, an autonomous, nonlinear dynamical system can be represented as a linear system in an infinite dimensional space. The theory guarantees the exact linearization, but it is not applicable to systems with active control inputs, and the number of variables must be truncated to a finite dimensional system for practical use. Furthermore, the original theory does not state how to find additional variables, called observables, to represent a nonlinear system in the lifted space, where the system behaves linearly. Here, we will establish a systematic way of finding effective observables based on physical modeling theory, namely, Bond Graphs modeling. Given the physical connectivity of system elements, a special class of observables, called auxiliary variables, are defined. Two linear state equations, one for state variables and the other for auxiliary variables, represent the nonlinear dynamics in the lifted space. This is known as Dual-Faceted (DF) Linearization. These auxiliary variables possess clear physical meanings, and use of these auxiliary variables for linear feedback can better inform the controller and outperforms its counterpart. If the auxiliary variables, or part of them, are physically measurable, the linear model can be identified through a data-driven sub-space method. The DF Linearization is particularly useful for nonlinear Model Predictive Control (MPC), where the linear model in the lifted space provides an accurate approximation over a finite time horizon and reduces the original nonlinear MPC to a linear MPC. The optimization problem becomes convex and the computation time drastically reduces.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自动驾驶汽车、自主机器人、生物反应器等先进的控制系统表现出复杂的行为,不遵循简单的比例规则和线性关系。在许多工业领域,控制这些非线性系统仍然是工程师面临的一个挑战。本研究旨在将复杂的非线性系统简化为线性系统,同时保留其原有的非线性行为。一旦转换为线性系统,控制设计变得更加容易,计算复杂度大大降低。这种有利的结果是通过用比我们通常使用的更多的变量来表示系统而实现的。传统的使用有限数量变量的描述会导致非线性,而这种使用更多变量的新方法允许人们在线性域内处理非线性。通过这种新方法,具有挑战性的非线性控制问题可以变得易于处理,并且可以为广泛的控制系统和产品创建简单实用的解决方案。根据库普曼的理论,一个自治的非线性动力系统可以表示为一个无限维空间中的线性系统。该理论保证了精确的线性化,但不适用于具有主动控制输入的系统,并且为了实际使用,必须将变量的数量截断为有限维系统。此外,原始理论并没有说明如何找到额外的变量,称为可观测值,以表示提升空间中的非线性系统,其中系统表现为线性。在这里,我们将建立一种基于物理建模理论的系统的寻找有效可观测物的方法,即键图建模。给定系统元素的物理连通性,定义了一类特殊的可观察对象,称为辅助变量。两个线性状态方程,一个表示状态变量,另一个表示辅助变量,表示提升空间中的非线性动力学。这就是所谓的双面(DF)线性化。这些辅助变量具有明确的物理意义,并且将这些辅助变量用于线性反馈可以更好地告知控制器并优于其对应变量。如果辅助变量或辅助变量的一部分在物理上是可测量的,则可以通过数据驱动的子空间方法识别线性模型。DF线性化对于非线性模型预测控制(MPC)特别有用,其中提升空间中的线性模型提供了有限时间范围内的精确近似值,并将原始非线性MPC减少为线性MPC。优化问题变得凸化,计算时间大大减少。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Global, Unified Representation of Heterogenous Robot Dynamics Using Composition Operators: A Koopman Direct Encoding Method
使用组合算子的异构机器人动力学的全局统一表示:库普曼直接编码方法
Model Predictive Control and Transfer Learning of Hybrid Systems Using Lifting Linearization Applied to Cable Suspension Systems
将提升线性化应用于电缆悬挂系统的混合系统的模型预测控制和迁移学习
Data-Driven Encoding: A New Numerical Method for Computation of the Koopman Operator
数据驱动编码:一种新的库普曼算子计算数值方法
Dynamic Modeling of Bucket-Soil Interactions Using Koopman-DFL Lifting Linearization for Model Predictive Contouring Control of Autonomous Excavators
使用 Koopman-DFL 提升线性化对铲斗-土壤相互作用进行动态建模,实现自动挖掘机的模型预测轮廓控制
  • DOI:
    10.1109/lra.2021.3121136
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Sotiropoulos, Filippos E.;Asada, H. Harry
  • 通讯作者:
    Asada, H. Harry
Learned Lifted Linearization Applied to Unstable Dynamic Systems Enabled by Koopman Direct Encoding
学习提升线性化应用于由库普曼直接编码实现的不稳定动态系统
  • DOI:
    10.1109/lcsys.2022.3231641
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Ng, Jerry;Asada, H. Harry
  • 通讯作者:
    Asada, H. Harry
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Haruhiko Asada其他文献

Reinforcement Learning of Assembly Robots
装配机器人的强化学习
  • DOI:
    10.1007/bfb0027599
  • 发表时间:
    1993
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Boo;Haruhiko Asada
  • 通讯作者:
    Haruhiko Asada
Industrial Problem Session: Robotics and Discrete Manufacturing
  • DOI:
    10.1016/s1474-6670(17)61330-2
  • 发表时间:
    1984-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yasujiro Oshima;Jozsef Hatvany;Haruhiko Asada;Eichi Nakao;Otmar G. Ladanyi
  • 通讯作者:
    Otmar G. Ladanyi
Experimental Verification of Human Skill Transfer to Deburring Robots
人类技能向去毛刺机器人转移的实验验证
  • DOI:
    10.1007/bfb0036131
  • 发表时间:
    1991
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haruhiko Asada;Sheng Liu
  • 通讯作者:
    Sheng Liu
Progressive learning for robotic assembly: learning impedance with an excitation scheduling method
机器人装配的渐进式学习:使用激励调度方法学习阻抗
Development of a Holonomic Omnidirectional Vehicle and an Accurate Guidance Method of the Vehicles
完整全向飞行器研制及其精确制导方法

Haruhiko Asada的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Haruhiko Asada', 18)}}的其他基金

NSF Convergence Accelerator Track M: Soft Growing Robots for Mobility Support
NSF 融合加速器轨道 M:用于移动支持的软生长机器人
  • 批准号:
    2344314
  • 财政年份:
    2024
  • 资助金额:
    $ 47.89万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Remotely Operated Reconfigurable Walker Robots for Eldercare
合作研究:NRI:用于老年护理的远程操作可重构步行机器人
  • 批准号:
    2133072
  • 财政年份:
    2022
  • 资助金额:
    $ 47.89万
  • 项目类别:
    Standard Grant
Planning Grant: Engineering Research Center for Connected Eldercare
规划资助:互联养老工程研究中心
  • 批准号:
    2124319
  • 财政年份:
    2021
  • 资助金额:
    $ 47.89万
  • 项目类别:
    Standard Grant
Computational Modeling for Predicting 3D Cancer Cell Invasion into the Extracellular Fiber Network
用于预测 3D 癌细胞侵入细胞外纤维网络的计算模型
  • 批准号:
    1762961
  • 财政年份:
    2018
  • 资助金额:
    $ 47.89万
  • 项目类别:
    Standard Grant
SBIR Phase I: Wearable Grippers for Hemiplegic Patients
SBIR 第一阶段:偏瘫患者的可穿戴抓手
  • 批准号:
    1548953
  • 财政年份:
    2016
  • 资助金额:
    $ 47.89万
  • 项目类别:
    Standard Grant
Control-Configured Underwater Robots for Precision Multi-Axis Maneuvering
用于精密多轴操纵的控制配置水下机器人
  • 批准号:
    1363391
  • 财政年份:
    2014
  • 资助金额:
    $ 47.89万
  • 项目类别:
    Standard Grant
A Multi-Cellular PZT Actuator/Generator with Tunable Stiffness and Resonant Frequencies
具有可调刚度和谐振频率的多单元 PZT 致动器/发生器
  • 批准号:
    1000727
  • 财政年份:
    2010
  • 资助金额:
    $ 47.89万
  • 项目类别:
    Standard Grant
Stochastic Recruitment and Broadcast Feedback of Cellular Control Systems and Its Application to Muscle Actuators
细胞控制系统的随机募集和广播反馈及其在肌肉执行器中的应用
  • 批准号:
    0728162
  • 财政年份:
    2007
  • 资助金额:
    $ 47.89万
  • 项目类别:
    Standard Grant
Segmented Binary Control of Solid-State Shape-Memory-Alloy Array Actuators for Biologically Inspired Robotic Systems
用于仿生机器人系统的固态形状记忆合金阵列执行器的分段二进制控制
  • 批准号:
    0413242
  • 财政年份:
    2004
  • 资助金额:
    $ 47.89万
  • 项目类别:
    Continuing Grant
SGER: Exploratory Research on Wet SMA Array Actuators
SGER:湿式 SMA 阵列执行器的探索性研究
  • 批准号:
    0322601
  • 财政年份:
    2003
  • 资助金额:
    $ 47.89万
  • 项目类别:
    Standard Grant

相似海外基金

ML-based DPD for Wideband PA Linearization in mMIMO systems
基于 ML 的 DPD,用于 mMIMO 系统中的宽带 PA 线性化
  • 批准号:
    573751-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 47.89万
  • 项目类别:
    University Undergraduate Student Research Awards
Linearization of Nonlinear Conditions in Autonomous Vehicle Control Systems
自动车辆控制系统中非线性条件的线性化
  • 批准号:
    RGPIN-2020-06759
  • 财政年份:
    2022
  • 资助金额:
    $ 47.89万
  • 项目类别:
    Discovery Grants Program - Individual
Solving and Analyzing Nonlinear Multibody Dynamic Engineering Systems with a Piecewise Linearization Approach
使用分段线性化方法求解和分析非线性多体动态工程系统
  • 批准号:
    RGPIN-2020-06926
  • 财政年份:
    2022
  • 资助金额:
    $ 47.89万
  • 项目类别:
    Discovery Grants Program - Individual
Deep Neural Network (DNN)-based Linearization for Power Amplifiers
基于深度神经网络 (DNN) 的功率放大器线性化
  • 批准号:
    562387-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 47.89万
  • 项目类别:
    University Undergraduate Student Research Awards
Linearization of Nonlinear Conditions in Autonomous Vehicle Control Systems
自动车辆控制系统中非线性条件的线性化
  • 批准号:
    RGPIN-2020-06759
  • 财政年份:
    2021
  • 资助金额:
    $ 47.89万
  • 项目类别:
    Discovery Grants Program - Individual
Solving and Analyzing Nonlinear Multibody Dynamic Engineering Systems with a Piecewise Linearization Approach
使用分段线性化方法求解和分析非线性多体动态工程系统
  • 批准号:
    RGPIN-2020-06926
  • 财政年份:
    2021
  • 资助金额:
    $ 47.89万
  • 项目类别:
    Discovery Grants Program - Individual
Solving and Analyzing Nonlinear Multibody Dynamic Engineering Systems with a Piecewise Linearization Approach
使用分段线性化方法求解和分析非线性多体动态工程系统
  • 批准号:
    RGPIN-2020-06926
  • 财政年份:
    2020
  • 资助金额:
    $ 47.89万
  • 项目类别:
    Discovery Grants Program - Individual
Linearization of Nonlinear Conditions in Autonomous Vehicle Control Systems
自动车辆控制系统中非线性条件的线性化
  • 批准号:
    RGPIN-2020-06759
  • 财政年份:
    2020
  • 资助金额:
    $ 47.89万
  • 项目类别:
    Discovery Grants Program - Individual
Regulation of collagen linearization during cancer progression and metastasis
癌症进展和转移过程中胶原蛋白线性化的调节
  • 批准号:
    10310950
  • 财政年份:
    2020
  • 资助金额:
    $ 47.89万
  • 项目类别:
Regulation of collagen linearization during cancer progression and metastasis
癌症进展和转移过程中胶原蛋白线性化的调节
  • 批准号:
    10524153
  • 财政年份:
    2020
  • 资助金额:
    $ 47.89万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了