NRT-HDR Data Driven Decision Making to Address Complex Resource Problems

NRT-HDR 数据驱动决策以解决复杂的资源问题

基本信息

  • 批准号:
    2021874
  • 负责人:
  • 金额:
    $ 299.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-15 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Award 2021874NRT-HDR Data Driven Decision Making to Address Complex Resource Problems“No one ever made a decision because of a number. They need a story,” explained Nobel Laureate Daniel Kahneman. Telling stories, while remaining true to the data, is a defining challenge of this century. Narratives are persuasive but not objective; numbers are often objective but not persuasive. For science to provide the broadest beneficial impact to society, its findings need to be communicated with both scientific integrity and authentic empathy. Although a growing number of interdisciplinary careers demand this dual fluency, current graduate curricula do not adequately prepare students to master these skills. At many institutions, training remains siloed, and curricular partitions separate those with skills in data science theory, deep domain-specific knowledge, and policy analysis. These partitions do not map well to the real world, where the most pressing social and environmental challenges demand interdisciplinary innovation and collaboration. Effective interdisciplinary collaboration requires a level of exposure, experience, and practice in real-world problem-solving that combines numbers and narratives. This National Science Foundation Research Traineeship (NRT) award to Tufts University will address this need by educating Data Professionals who will synthesize numbers and narratives to design and implement data-driven solutions that are technically efficient and contextually appropriate. The project anticipates training over 140 masters and doctoral trainees: 20 NRT Fellows with stipends, 50 NRT Problem-Focused Immersion Fellows, 60 NRT Travel Awardees, and 12 NRT Module Developers. This NRT will train two types of data professionals. Policy-Savvy Data Experts—primarily from STEM disciplines—will advance the frontiers of data science and will be able to (a) identify, analyze, and solve a problem with the appropriate data-driven theory, tools, and techniques; and (b) adapt and acquire skill sets to harness emerging data-focused technologies, techniques, and tools. At the same time, they will have training in policy-relevant skills and be able to collaborate with the less technically trained decision-makers in their workplace. Data-Proficient Decision Makers—primarily from non-STEM disciplines—will use data in policy development and decision making. They will be able to (a) collaborate effectively on teams that include users and producers of data, including scientists, engineers, practitioners, and decision-makers with different backgrounds and perspectives; and (b) provide data-informed advice in an actionable way as well as broadly communicate those results for effective action. Trainees will have hands-on experience with a growing portfolio of data science tools and methods that facilitate the rapid translation of data into actionable information. Training will be grounded in finding, defining and resolving problems from both data-rich (i.e., big data) and data-scarce contexts common to many real-world resource problems – including those at the intersection of Food, Energy, Water, and Ecosystems. This NRT model will provide an interdisciplinary theory-practice synthesis by building on two potentially transformative components: (1) Modular Course Elements (MCEs); and (2) Problem-Focused Immersion (PFI). A unique aspect of this NRT is the use of a common database across the MCEs, akin to the adoption of a common book in Writing Across the Curriculum programs. The proposed problem-focused and theory-practice synthesis strategy will foster deeper actionable collaboration among data science experts, domain experts, practitioners, and decision-makers. With this project’s commitment and plan to educate Data Professionals from STEM and non-STEM disciplines, it will actively pursue broadening participation in data science from under-represented groups. Content-rich, modular and adaptable nature of program elements will make them transferrable across disciplines and institutions and sustainable beyond the NRT grant period.The NSF Research Traineeship (NRT) Program is designed to encourage the development and implementation of bold, new potentially transformative models for STEM graduate education training. The program is dedicated to effective training of STEM graduate students in high priority interdisciplinary or convergent research areas through comprehensive traineeship models that are innovative, evidence-based, and aligned with changing workforce and research needs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
2021874 NRT-HDR数据驱动决策解决复杂资源问题“没有人会因为一个数字而做出决定。他们需要一个故事,”诺贝尔奖得主丹尼尔卡尼曼解释说。讲故事,同时保持对数据的真实性,是这个世纪的一个决定性挑战。叙述具有说服力,但不客观;数字往往客观,但不具有说服力。为了使科学对社会产生最广泛的有益影响,其研究结果需要以科学的完整性和真正的同理心进行传播。虽然越来越多的跨学科职业需要这种双流利性,目前的研究生课程没有充分准备学生掌握这些技能。在许多机构,培训仍然是孤立的,课程划分将那些具有数据科学理论,深入的特定领域知识和政策分析技能的人分开。这些划分并不能很好地映射到真实的世界,在这个世界上,最紧迫的社会和环境挑战需要跨学科的创新和合作。有效的跨学科合作需要一定程度的曝光,经验和实践,在现实世界中解决问题,结合数字和叙述。塔夫茨大学的国家科学基金会研究培训(NRT)奖将通过教育数据专业人员来解决这一需求,这些数据专业人员将综合数字和叙述来设计和实施技术上有效且适合上下文的数据驱动解决方案。该项目预计将培训140多名硕士和博士生:20名NRT研究员,50名NRT问题专注沉浸式研究员,60名NRT旅行获奖者和12名NRT模块开发人员。该NRT将培训两种类型的数据专业人员。精通政策的数据专家-主要来自STEM学科-将推进数据科学的前沿,并将能够(a)识别,分析和解决问题与适当的数据驱动的理论,工具和技术;和(B)适应和获得技能集,以利用新兴的数据为重点的技术,技术和工具。与此同时,他们将接受与政策有关的技能培训,并能够在其工作场所与技术培训较少的决策者合作。精通数据的决策者-主要来自非STEM学科-将在政策制定和决策中使用数据。他们将能够(a)在包括数据用户和数据生产者的团队中进行有效合作,包括具有不同背景和观点的科学家、工程师、从业人员和决策者;(B)以可行的方式提供基于数据的咨询意见,并广泛传播这些结果,以便采取有效行动。学员将拥有越来越多的数据科学工具和方法组合的实践经验,这些工具和方法有助于将数据快速转换为可操作的信息。培训将立足于从丰富的数据(即,大数据)和许多现实世界资源问题常见的数据稀缺背景-包括食品、能源、水和生态系统交叉的问题。这种NRT模式将通过建立两个潜在的变革性组件提供跨学科的理论-实践综合:(1)模块化课程元素(MCE);和(2)以问题为中心的沉浸式(PFI)。这个NRT的一个独特之处是在MCE中使用一个通用的数据库,类似于在整个课程计划中采用一本通用的书。提出的以问题为中心的理论实践综合策略将促进数据科学专家、领域专家、从业者和决策者之间更深入的可操作合作。通过该项目的承诺和计划,教育来自STEM和非STEM学科的数据专业人员,它将积极寻求扩大代表性不足的群体对数据科学的参与。内容丰富,模块化和适应性强的计划元素将使他们跨学科和机构和可持续超越NRT资助期限转移。NSF研究培训(NRT)计划旨在鼓励开发和实施大胆的,新的潜在变革模型STEM研究生教育培训。该计划致力于通过创新的、基于证据的、与不断变化的劳动力和研究需求相一致的综合培训模式,在高优先级的跨学科或融合研究领域对STEM研究生进行有效培训。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On Optimizing the Conditional Value-at-Risk of a Maximum Cost for Risk-Averse Safety Analysis
  • DOI:
    10.1109/tac.2022.3195381
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Margaret P. Chapman;Michael Fauss;K. Smith
  • 通讯作者:
    Margaret P. Chapman;Michael Fauss;K. Smith
Risk-Sensitive Safety Analysis Using Conditional Value-at-Risk
  • DOI:
    10.1109/tac.2021.3131149
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Margaret P. Chapman;Riccardo Bonalli;K. Smith;Insoon Yang;M. Pavone;C. Tomlin
  • 通讯作者:
    Margaret P. Chapman;Riccardo Bonalli;K. Smith;Insoon Yang;M. Pavone;C. Tomlin
Classical Risk-Averse Control for a Finite-Horizon Borel Model
  • DOI:
    10.1109/lcsys.2021.3114126
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Margaret P. Chapman;K. Smith
  • 通讯作者:
    Margaret P. Chapman;K. Smith
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shafiqul Islam其他文献

Effect of optical and electronic structure on the photocatalytic activity of Al doped ZnO ALD thin films on glass fibers
  • DOI:
    10.1016/j.jphotochem.2024.115915
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sena Gulec;Asife B. Arat;Shafiqul Islam;Halil I. Akyildiz
  • 通讯作者:
    Halil I. Akyildiz
Evaluation of environmental impacts of cotton polo shirt production in Bangladesh using life cycle assessment
使用生命周期评估对孟加拉国棉质马球衫生产的环境影响进行评估
  • DOI:
    10.1016/j.scitotenv.2024.172097
  • 发表时间:
    2024-05-20
  • 期刊:
  • 影响因子:
    8.000
  • 作者:
    Shafiqul Islam;A.K.M. Mehedi Hasan;Muhammad Abdur Rahman Bhuiyan;Gajanan Bhat
  • 通讯作者:
    Gajanan Bhat
Navigating the complexities of end-stage kidney disease (ESKD) from risk factors to outcome: insights from the UK Biobank cohort
  • DOI:
    10.1186/s12882-025-04090-7
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    Debasish Kar;Richard Byng;Aziz Sheikh;Mintu Nath;Bedowra Zabeen;Shubharthi Kar;Shakila Banu;Mohammad Habibur Rahman Sarker;Navid Khan;Durjoy Acharjee;Shafiqul Islam;Victoria Allgar;José M. Ordóñez-Mena;Aya El-Wazir;Soon Song;Ashish Verma;Umesh Kadam;Simon de Lusignan
  • 通讯作者:
    Simon de Lusignan
Large cerebellopontine angle tuberculoma: a case report
  • DOI:
    10.5114/ninp.2012.28267
  • 发表时间:
    2012-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Raziul Haque;Forhad Hossain Chowdhury;Shafiqul Islam;Asit Chandra Sarker;Momtazul Hoque
  • 通讯作者:
    Momtazul Hoque
Surface Modification and Characterization of Raw Pineapple Leaf Fibers (PLF) Using Sodium Hydroxide (NaOH) and Graphene Oxide (GO)
  • DOI:
    10.1007/s12221-024-00794-z
  • 发表时间:
    2024-12-06
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Hasan Mahmud;Shilpi Akter;Shafiqul Islam
  • 通讯作者:
    Shafiqul Islam

Shafiqul Islam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shafiqul Islam', 18)}}的其他基金

III: Small: Collaborative Research: Study of Neural Architectural Components in Physics-Informed Deep Neural Networks for Extreme Flood Prediction
III:小型:协作研究:用于极端洪水预测的物理信息深度神经网络中的神经架构组件研究
  • 批准号:
    2008276
  • 财政年份:
    2020
  • 资助金额:
    $ 299.99万
  • 项目类别:
    Continuing Grant
RCN-SEES A Global Water Diplomacy Network: Synthesis of Science, Policy, and Politics for a Sustainable Water Future
RCN-SEES 全球水外交网络:综合科学、政策和政治,打造可持续的水未来
  • 批准号:
    1140163
  • 财政年份:
    2012
  • 资助金额:
    $ 299.99万
  • 项目类别:
    Standard Grant
Water Diplomacy Workshop: Strengthening Science and Enhancing International Partnerships in a Globalized World, Medford, Massachusetts, June, 2011
水外交研讨会:在全球化世界中加强科学和加强国际伙伴关系,马萨诸塞州梅德福,2011 年 6 月
  • 批准号:
    1132053
  • 财政年份:
    2011
  • 资助金额:
    $ 299.99万
  • 项目类别:
    Standard Grant
IGERT: Water Across Boundaries - Integration of Science, Engineering, and Diplomacy
IGERT:跨界之水 - 科学、工程和外交的整合
  • 批准号:
    0966093
  • 财政年份:
    2010
  • 资助金额:
    $ 299.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: A Precipitation Dipole in Eastern North America: Issues of Space-Time Variability and Physical Mechanisms
合作研究:北美东部的降水偶极子:时空变率和物理机制问题
  • 批准号:
    0809783
  • 财政年份:
    2008
  • 资助金额:
    $ 299.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Variations and Trends in Fall Precipitation over the Central United States: Issues of Physical Mechanisms, Circulation Anomalies and Boundary Forcing
合作研究:美国中部秋季降水的变化和趋势:物理机制、环流异常和边界强迫问题
  • 批准号:
    0741600
  • 财政年份:
    2008
  • 资助金额:
    $ 299.99万
  • 项目类别:
    Continuing Grant
Collaborative Research -- Groundwater Dynamics and Arsenic Contamination in the Ganges Delta: Irrigated Agriculture, Subsurface Chemical Transport, and Aquifer Flushing
合作研究——恒河三角洲地下水动力学和砷污染:灌溉农业、地下化学物质输送和含水层冲洗
  • 批准号:
    0510429
  • 财政年份:
    2005
  • 资助金额:
    $ 299.99万
  • 项目类别:
    Continuing Grant
US-Bangladesh Workshop: Water and Environment in the Ganges-Brahmaputtra-Meghna Delta; Dhaka, Bangladesh
美国-孟加拉国研讨会:恒河-雅鲁藏布江-梅格纳三角洲的水与环境;
  • 批准号:
    0138588
  • 财政年份:
    2002
  • 资助金额:
    $ 299.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Arsenic Contaminated Groundwater in Bangladesh: Characterizing the Source Mobilization and Transport.
合作研究:孟加拉国砷污染地下水:描述源头动员和运输特征。
  • 批准号:
    0001348
  • 财政年份:
    2000
  • 资助金额:
    $ 299.99万
  • 项目类别:
    Standard Grant
Effects of Space-Time Dynamics of Surface Processes on Land-Atmosphere Interactions at the Mesoscale
地表过程时空动力学对中尺度陆地-大气相互作用的影响
  • 批准号:
    9526628
  • 财政年份:
    1996
  • 资助金额:
    $ 299.99万
  • 项目类别:
    Continuing Grant

相似国自然基金

新型复合物gemcitabine-miR-15a靶向抑制PRMT5-RPA-HDR信号通路促进胰腺癌化疗增敏的分子机制
  • 批准号:
    82373128
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
基于神经网络压缩和可分级策略的HDR视频编码方法研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
CASAAV-HDR靶向基因组整合CaMKⅡ抑制肽AIP治疗心力衰竭的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向LDR立体显示的HDR立体视频版权保护研究
  • 批准号:
    61971247
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
CRISPR/Cas9介导HDR-SSA两步法猪IGF2基因“无缝编辑”新技术研究
  • 批准号:
    31702099
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
单曝光HDR成像关键技术研究
  • 批准号:
    61401072
  • 批准年份:
    2014
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NRT-HDR: Integrative Training in Data Science-Enabled Sensing of the Environment for Climate Adaptation (DataSENSE)
NRT-HDR:数据科学支持的气候适应环境感知综合培训 (DataSENSE)
  • 批准号:
    2244403
  • 财政年份:
    2023
  • 资助金额:
    $ 299.99万
  • 项目类别:
    Continuing Grant
NRT-HDR: Advancing Materials Frontiers with Creativity and Data Science
NRT-HDR:通过创造力和数据科学推进材料前沿
  • 批准号:
    2243526
  • 财政年份:
    2023
  • 资助金额:
    $ 299.99万
  • 项目类别:
    Standard Grant
NRT-HDR: using a data analytics framework to merge STEM and entrepreneurial training
NRT-HDR:使用数据分析框架融合 STEM 和创业培训
  • 批准号:
    2244091
  • 财政年份:
    2023
  • 资助金额:
    $ 299.99万
  • 项目类别:
    Continuing Grant
NRT-HDR: WaterCube: Big Data Water Science for Sustainability and Equity
NRT-HDR:WaterCube:大数据水科学促进可持续发展和公平
  • 批准号:
    2244164
  • 财政年份:
    2023
  • 资助金额:
    $ 299.99万
  • 项目类别:
    Standard Grant
NRT-HDR: Convergence at the Interfaces of Policy, Data Science, Environmental Science and Engineering to Combat the Spread of Antibiotic Resistance
NRT-HDR:政策、数据科学、环境科学和工程的融合,对抗抗生素耐药性的蔓延
  • 批准号:
    2125798
  • 财政年份:
    2021
  • 资助金额:
    $ 299.99万
  • 项目类别:
    Standard Grant
NRT- HDR: Computing and Data Science Training for Materials Innovation, Discovery, Analytics
NRT- HDR:材料创新、发现、分析的计算和数据科学培训
  • 批准号:
    2125703
  • 财政年份:
    2021
  • 资助金额:
    $ 299.99万
  • 项目类别:
    Continuing Grant
NRT-HDR: Detecting and Addressing Bias in Data, Humans, and Institutions
NRT-HDR:检测和解决数据、人类和机构中的偏见
  • 批准号:
    2125295
  • 财政年份:
    2021
  • 资助金额:
    $ 299.99万
  • 项目类别:
    Standard Grant
NRT-HDR: Data-Driven Sustainable Engineering for a Circular Economy
NRT-HDR:数据驱动的循环经济可持续工程
  • 批准号:
    2021871
  • 财政年份:
    2020
  • 资助金额:
    $ 299.99万
  • 项目类别:
    Standard Grant
NRT-HDR: Graduate Traineeship in Data Science Technologies and Applications
NRT-HDR:数据科学技术和应用研究生实习
  • 批准号:
    2021585
  • 财政年份:
    2020
  • 资助金额:
    $ 299.99万
  • 项目类别:
    Standard Grant
NRT-HDR: Science Museums Advance Research and Training through Convergence of Objects, Data, and Inference
NRT-HDR:科学博物馆通过对象、数据和推理的融合推进研究和培训
  • 批准号:
    2021744
  • 财政年份:
    2020
  • 资助金额:
    $ 299.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了