III: Small: Collaborative Research: Study of Neural Architectural Components in Physics-Informed Deep Neural Networks for Extreme Flood Prediction
III:小型:协作研究:用于极端洪水预测的物理信息深度神经网络中的神经架构组件研究
基本信息
- 批准号:2008276
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding our physical world is clearly critical and beneficial to human society, which has become a central focus and challenge in many areas of science and engineering for centuries. This project will develop machine learning-based techniques to model complex atmospheric systems (from weather to climate). Atmospheric system models can approximate atmospheric flow and predict sequence of extreme precipitation events including flooding. Flooding is one the most deadly and costly natural hazards in the world. Mounting losses from catastrophic floods are driving an intense effort to increase preparedness and improve response to disastrous flood events by providing early warnings. Findings in this project will help decision makers better determine the need for and outcomes of particular policy actions. For example, a 10-15 day lead time in flood prediction will allow significant changes in the way reservoir operation rules are executed to minimize the impact of flood events. Moreover, this project will provide undergraduate and graduate students with valuable research and training opportunities, encourage minority and woman participation in science and engineering, and have a broad and sustainable impact on Computer Science curricula and courseware development. Many physical systems can be described by a set of governing partial differential equations. However, these underlying governing partial differential equations are often coupled and nonlinear, do not have tractable analytical solutions, and need numerical approximations that are highly sensitive to initial and boundary conditions. This project synthesizes current understanding of physical systems with novel neural architectures to develop deep neural network models that can improve interpretation, generalization and prediction of complex physical system models. To achieve this goal, this project focuses on three interrelated research activities: (1) developing a library of neural architectural components to build modular neural network models; (2) testing neural architectural component based deep learning approach for flood prediction; and (3) building physics inspired deep learning models for better interpretation and prediction. This project investigates a new approach of developing and using basic neural architectural components to build large physics-informed deep neural networks. The modularity-based approach on study of neural architectures is critically important to enhance understanding and interpretability of deep learning models and has broad applications in multiple scientific domains. From scientific perspective, it will provide a new benchmark on the efficacy of using neural architectural components to build physics-informed deep neural network models and quantify achievable predictability limits for a class of precipitation and flood events by combining strengths of partial differential equation based numerical weather prediction models and recent advances in deep learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
理解我们的物理世界显然对人类社会至关重要和有益,几个世纪以来,这已经成为科学和工程许多领域的中心焦点和挑战。该项目将开发基于机器学习的技术,以模拟复杂的大气系统(从天气到气候)。大气系统模式可以近似大气流动和预测极端降水事件,包括洪水序列。洪水是世界上最致命和代价最高的自然灾害之一。灾难性洪水造成的损失不断增加,促使人们加紧努力,通过提供早期预警,加强备灾工作,改善对灾难性洪水事件的反应。该项目的研究结果将有助于决策者更好地确定特定政策行动的必要性和结果。例如,洪水预测的10-15天提前期将允许水库运行规则的执行方式发生重大变化,以最大限度地减少洪水事件的影响。此外,该项目将为本科生和研究生提供宝贵的研究和培训机会,鼓励少数民族和妇女参与科学和工程,并对计算机科学课程和课件开发产生广泛和可持续的影响。许多物理系统可以用一组控制偏微分方程来描述。然而,这些基本的偏微分方程往往是耦合和非线性的,没有易于处理的解析解,并需要数值逼近,是高度敏感的初始和边界条件。该项目将当前对物理系统的理解与新的神经架构相结合,以开发深度神经网络模型,从而改善复杂物理系统模型的解释、推广和预测。为了实现这一目标,该项目侧重于三个相互关联的研究活动:(1)开发神经架构组件库,以构建模块化神经网络模型;(2)测试基于神经架构组件的深度学习方法用于洪水预测;(3)构建物理启发的深度学习模型,以更好地解释和预测。该项目研究了一种开发和使用基本神经架构组件来构建大型物理信息深度神经网络的新方法。基于模块化的神经架构研究方法对于增强深度学习模型的理解和可解释性至关重要,并在多个科学领域具有广泛的应用。从科学的角度来看,它将为使用神经结构组件构建物理学的有效性提供一个新的基准-通过结合基于偏微分方程的数值天气预报模型的优势和深度学习的最新进展,为一类降水和洪水事件建立了知情的深度神经网络模型,并量化了可实现的可预测性极限。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来提供支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shafiqul Islam其他文献
Effect of optical and electronic structure on the photocatalytic activity of Al doped ZnO ALD thin films on glass fibers
- DOI:
10.1016/j.jphotochem.2024.115915 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Sena Gulec;Asife B. Arat;Shafiqul Islam;Halil I. Akyildiz - 通讯作者:
Halil I. Akyildiz
Evaluation of environmental impacts of cotton polo shirt production in Bangladesh using life cycle assessment
使用生命周期评估对孟加拉国棉质马球衫生产的环境影响进行评估
- DOI:
10.1016/j.scitotenv.2024.172097 - 发表时间:
2024-05-20 - 期刊:
- 影响因子:8.000
- 作者:
Shafiqul Islam;A.K.M. Mehedi Hasan;Muhammad Abdur Rahman Bhuiyan;Gajanan Bhat - 通讯作者:
Gajanan Bhat
Large cerebellopontine angle tuberculoma: a case report
- DOI:
10.5114/ninp.2012.28267 - 发表时间:
2012-01-01 - 期刊:
- 影响因子:
- 作者:
Raziul Haque;Forhad Hossain Chowdhury;Shafiqul Islam;Asit Chandra Sarker;Momtazul Hoque - 通讯作者:
Momtazul Hoque
Navigating the complexities of end-stage kidney disease (ESKD) from risk factors to outcome: insights from the UK Biobank cohort
- DOI:
10.1186/s12882-025-04090-7 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:2.400
- 作者:
Debasish Kar;Richard Byng;Aziz Sheikh;Mintu Nath;Bedowra Zabeen;Shubharthi Kar;Shakila Banu;Mohammad Habibur Rahman Sarker;Navid Khan;Durjoy Acharjee;Shafiqul Islam;Victoria Allgar;José M. Ordóñez-Mena;Aya El-Wazir;Soon Song;Ashish Verma;Umesh Kadam;Simon de Lusignan - 通讯作者:
Simon de Lusignan
Surface Modification and Characterization of Raw Pineapple Leaf Fibers (PLF) Using Sodium Hydroxide (NaOH) and Graphene Oxide (GO)
- DOI:
10.1007/s12221-024-00794-z - 发表时间:
2024-12-06 - 期刊:
- 影响因子:2.300
- 作者:
Hasan Mahmud;Shilpi Akter;Shafiqul Islam - 通讯作者:
Shafiqul Islam
Shafiqul Islam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shafiqul Islam', 18)}}的其他基金
NRT-HDR Data Driven Decision Making to Address Complex Resource Problems
NRT-HDR 数据驱动决策以解决复杂的资源问题
- 批准号:
2021874 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
RCN-SEES A Global Water Diplomacy Network: Synthesis of Science, Policy, and Politics for a Sustainable Water Future
RCN-SEES 全球水外交网络:综合科学、政策和政治,打造可持续的水未来
- 批准号:
1140163 - 财政年份:2012
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Water Diplomacy Workshop: Strengthening Science and Enhancing International Partnerships in a Globalized World, Medford, Massachusetts, June, 2011
水外交研讨会:在全球化世界中加强科学和加强国际伙伴关系,马萨诸塞州梅德福,2011 年 6 月
- 批准号:
1132053 - 财政年份:2011
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
IGERT: Water Across Boundaries - Integration of Science, Engineering, and Diplomacy
IGERT:跨界之水 - 科学、工程和外交的整合
- 批准号:
0966093 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: A Precipitation Dipole in Eastern North America: Issues of Space-Time Variability and Physical Mechanisms
合作研究:北美东部的降水偶极子:时空变率和物理机制问题
- 批准号:
0809783 - 财政年份:2008
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Variations and Trends in Fall Precipitation over the Central United States: Issues of Physical Mechanisms, Circulation Anomalies and Boundary Forcing
合作研究:美国中部秋季降水的变化和趋势:物理机制、环流异常和边界强迫问题
- 批准号:
0741600 - 财政年份:2008
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research -- Groundwater Dynamics and Arsenic Contamination in the Ganges Delta: Irrigated Agriculture, Subsurface Chemical Transport, and Aquifer Flushing
合作研究——恒河三角洲地下水动力学和砷污染:灌溉农业、地下化学物质输送和含水层冲洗
- 批准号:
0510429 - 财政年份:2005
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
US-Bangladesh Workshop: Water and Environment in the Ganges-Brahmaputtra-Meghna Delta; Dhaka, Bangladesh
美国-孟加拉国研讨会:恒河-雅鲁藏布江-梅格纳三角洲的水与环境;
- 批准号:
0138588 - 财政年份:2002
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Arsenic Contaminated Groundwater in Bangladesh: Characterizing the Source Mobilization and Transport.
合作研究:孟加拉国砷污染地下水:描述源头动员和运输特征。
- 批准号:
0001348 - 财政年份:2000
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Effects of Space-Time Dynamics of Surface Processes on Land-Atmosphere Interactions at the Mesoscale
地表过程时空动力学对中尺度陆地-大气相互作用的影响
- 批准号:
9526628 - 财政年份:1996
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322973 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322974 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
- 批准号:
2336769 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
- 批准号:
2336768 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
III: Small: Multiple Device Collaborative Learning in Real Heterogeneous and Dynamic Environments
III:小:真实异构动态环境中的多设备协作学习
- 批准号:
2311990 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Reconstruction of Diffusion History in Cyber and Human Networks with Applications in Epidemiology and Cybersecurity
合作研究:III:小:重建网络和人类网络中的扩散历史及其在流行病学和网络安全中的应用
- 批准号:
2324770 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311596 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311598 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Physics Guided Graph Networks for Modeling Water Dynamics in Freshwater Ecosystems
合作研究:III:小型:用于模拟淡水生态系统中水动力学的物理引导图网络
- 批准号:
2316306 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Reconstruction of Diffusion History in Cyber and Human Networks with Applications in Epidemiology and Cybersecurity
合作研究:III:小:重建网络和人类网络中的扩散历史及其在流行病学和网络安全中的应用
- 批准号:
2324769 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant