Collaborative Research: Biology-guided neural networks for discovering phenotypic traits
合作研究:生物学引导的神经网络发现表型特征
基本信息
- 批准号:2022042
- 负责人:
- 金额:$ 42.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-15 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Unlike genetic data, the traits of organisms such as their visible features, are not available in databases for analysis. The lack of machine-readable trait data has slowed progress on four grand challenge problems in biology: predicting the genes that generate traits, understanding the patterns of evolution, predicting the effects of ecological change, and species identification. This project will use advances in machine learning and machine-readable biological knowledge to create a new method to automatically identify traits from images of organisms. Images of organisms are widely available, and this new method could be used to rapidly harvest traits that could be used to solve the grand challenges in biology. Large image collections and corresponding digital data from fishes will be used in this study because of the extensive resources available for these organisms. The new machine learning model can be generalized to other disciplines that have similar machine-readable knowledge, and it will help in explaining the results of artificial intelligence, thus advancing the field of computer science. The new method stands to benefit society in application to areas such as agriculture or medicine, where trait discovery from images is critical in disease diagnosis. The project will support the education of students and postdocs in biology, computer science, and information science. It will disseminate its findings through workshops, presentations, publications, and open access to data and code that it produces. This project will leverage advances in state-of-the-art machine learning to develop a novel class of artificial neural networks that can exploit the machine readable and predictive knowledge about biology that is available in the form of phylogenies and anatomy ontologies. These biology-guided neural networks are expected to automatically detect and predict traits from specimen images, with little training data. Image-based trait data derived from this work will enable progress in gene-phenotype mapping to novel traits and understanding patterns of evolution. The resulting machine learning model can be generalized to other disciplines that have formally structured knowledge, and will contribute to advances in computer science by going beyond black-box learning and making important advances toward Explainable Artificial Intelligence. It may be extended to applied areas, such as agriculture or the biomedical domain. The research will be piloted using teleost fishes because of many high-quality data resources (digital images, evolutionary trees, anatomy ontology). Methods for automated metadata quality assessment and provenance tracking will be developed in the course of this project to ensure the results and processes are verifiable, replicable and reusable. These will broadly impact the many domains that will adopt machine learning as a way to make discoveries from images. This convergent research will accelerate scientific discovery across the biological sciences and computer science by harnessing the data revolution in conjunction with biological knowledge.This project is part of the National Science Foundation's Harnessing the Data Revolution (HDR) Big Idea activity, and is jointly supported by the HDR and the Division of Biological Infrastructure within the NSF Directorate of Directorate for Biological Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
与遗传数据不同,生物体的特征,如其可见特征,无法在数据库中进行分析。 缺乏机器可读的性状数据已经减缓了生物学四大挑战问题的进展:预测产生性状的基因,理解进化模式,预测生态变化的影响,以及物种识别。该项目将利用机器学习和机器可读生物学知识的进步,创建一种新方法,从生物体图像中自动识别特征。 生物体的图像可以广泛获得,这种新方法可以用来快速获取可用于解决生物学重大挑战的特征。 大量的图像收集和相应的数字数据,从鱼类将用于这项研究,因为这些生物的广泛资源。新的机器学习模型可以推广到具有类似机器可读知识的其他学科,它将有助于解释人工智能的结果,从而推动计算机科学领域的发展。 这种新方法在应用于农业或医学等领域时将造福社会,在这些领域,从图像中发现特征对疾病诊断至关重要。 该项目将支持生物学、计算机科学和信息科学的学生和博士后的教育。 它将通过研讨会、演讲、出版物和开放获取其产生的数据和代码来传播其研究结果。该项目将利用最先进的机器学习的进步来开发一类新型的人工神经网络,该网络可以利用关于生物学的机器可读和预测性知识,这些知识以遗传学和解剖学本体的形式提供。 这些生物学引导的神经网络预计将自动检测和预测样本图像的特征,几乎没有训练数据。从这项工作中获得的基于图像的性状数据将使基因-表型映射到新性状和理解进化模式方面取得进展。由此产生的机器学习模型可以推广到其他具有正式结构化知识的学科,并将通过超越黑盒学习并在可解释人工智能方面取得重要进展来促进计算机科学的进步。 它可以扩展到应用领域,如农业或生物医学领域。该研究将使用硬骨鱼进行试点,因为有许多高质量的数据资源(数字图像,进化树,解剖本体)。在本项目过程中,将制定自动化元数据质量评估和来源跟踪方法,以确保结果和流程可核查、可复制和可重复使用。 这些将广泛影响将采用机器学习作为从图像中发现的方法的许多领域。这一融合研究将通过利用数据革命与生物知识的结合,加速生物科学和计算机科学的科学发现。该项目是美国国家科学基金会利用数据革命(HDR)大创意活动的一部分,该奖项由人类发展报告和NSF生物科学理事会生物基础设施司共同支持。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Biodiversity Image Quality Metadata Augments Convolutional Neural Network Classification of Fish Species
生物多样性图像质量元数据增强了鱼类物种的卷积神经网络分类
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Leipzig, J.;Bakis, Y;Wang, X;Elhamod, M.;Diamond, K.;Dahdul, W;Karpante, A;Maga, M;Mabee, P;Bart, H
- 通讯作者:Bart, H
Discovering Novel Biological Traits From Images Using Phylogeny-Guided Neural Networks
- DOI:10.1145/3580305.3599808
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Mohannad Elhamod;Mridul Khurana;Harish Babu Manogaran;J. Uyeda;M. Balk;W. Dahdul;Yasin Bakics;H. Bart;Paula M. Mabee;H. Lapp;J. Balhoff;Caleb Charpentier;David Carlyn;Wei-Lun Chao;Chuck Stewart;D. Rubenstein;T. Berger-Wolf;A. Karpatne
- 通讯作者:Mohannad Elhamod;Mridul Khurana;Harish Babu Manogaran;J. Uyeda;M. Balk;W. Dahdul;Yasin Bakics;H. Bart;Paula M. Mabee;H. Lapp;J. Balhoff;Caleb Charpentier;David Carlyn;Wei-Lun Chao;Chuck Stewart;D. Rubenstein;T. Berger-Wolf;A. Karpatne
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paula Mabee其他文献
Open Science principles for accelerating trait-based science across the Tree of Life
用于加速整个生命之树基于性状的科学的开放科学原则
- DOI:
10.1038/s41559-020-1109-6 - 发表时间:
2020-02-17 - 期刊:
- 影响因子:14.500
- 作者:
Rachael V. Gallagher;Daniel S. Falster;Brian S. Maitner;Roberto Salguero-Gómez;Vigdis Vandvik;William D. Pearse;Florian D. Schneider;Jens Kattge;Jorrit H. Poelen;Joshua S. Madin;Markus J. Ankenbrand;Caterina Penone;Xiao Feng;Vanessa M. Adams;John Alroy;Samuel C. Andrew;Meghan A. Balk;Lucie M. Bland;Brad L. Boyle;Catherine H. Bravo-Avila;Ian Brennan;Alexandra J. R. Carthey;Renee Catullo;Brittany R. Cavazos;Dalia A. Conde;Steven L. Chown;Belen Fadrique;Heloise Gibb;Aud H. Halbritter;Jennifer Hammock;J. Aaron Hogan;Hamish Holewa;Michael Hope;Colleen M. Iversen;Malte Jochum;Michael Kearney;Alexander Keller;Paula Mabee;Peter Manning;Luke McCormack;Sean T. Michaletz;Daniel S. Park;Timothy M. Perez;Silvia Pineda-Munoz;Courtenay A. Ray;Maurizio Rossetto;Hervé Sauquet;Benjamin Sparrow;Marko J. Spasojevic;Richard J. Telford;Joseph A. Tobias;Cyrille Violle;Ramona Walls;Katherine C. B. Weiss;Mark Westoby;Ian J. Wright;Brian J. Enquist - 通讯作者:
Brian J. Enquist
Phenotype Ontology Research Coordination Network meeting report: creating a community network for comparing and leveraging phenotype-genotype knowledge across species
- DOI:
10.4056/sigs.2926219 - 发表时间:
2012-07-20 - 期刊:
- 影响因子:5.400
- 作者:
Paula Mabee;Andrew Deans;Eva Huala;Suzanna E. Lewis - 通讯作者:
Suzanna E. Lewis
Paula Mabee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paula Mabee', 18)}}的其他基金
NEON Operations and Maintenance: Evolving from a Strong Foundation
NEON 运营和维护:从强大的基础发展而来
- 批准号:
2217817 - 财政年份:2023
- 资助金额:
$ 42.44万 - 项目类别:
Cooperative Agreement
National Ecological Observatory Network Governing Cooperative Agreement
国家生态观测站网络治理合作协议
- 批准号:
2346114 - 财政年份:2023
- 资助金额:
$ 42.44万 - 项目类别:
Cooperative Agreement
Collaborative Research: Biology-guided neural networks for discovering phenotypic traits
合作研究:生物学引导的神经网络发现表型特征
- 批准号:
1940340 - 财政年份:2019
- 资助金额:
$ 42.44万 - 项目类别:
Continuing Grant
National Ecological Observatory Network: Operations Activities
国家生态观测站网络:运行活动
- 批准号:
1724433 - 财政年份:2017
- 资助金额:
$ 42.44万 - 项目类别:
Cooperative Agreement
National Ecological Observatory Network
国家生态观测网
- 批准号:
1638694 - 财政年份:2016
- 资助金额:
$ 42.44万 - 项目类别:
Cooperative Agreement
National Ecological Observatory Network: Operations Activities
国家生态观测站网络:运行活动
- 批准号:
1638696 - 财政年份:2016
- 资助金额:
$ 42.44万 - 项目类别:
Cooperative Agreement
Collaborative research: ABI Development: Ontology-enabled reasoning across phenotypes from evolution and model organisms
合作研究:ABI 开发:跨进化和模式生物表型的本体推理
- 批准号:
1062542 - 财政年份:2011
- 资助金额:
$ 42.44万 - 项目类别:
Continuing Grant
Linking Evolution to Genomics Using Phenotype Ontologies
使用表型本体将进化与基因组学联系起来
- 批准号:
0641025 - 财政年份:2007
- 资助金额:
$ 42.44万 - 项目类别:
Continuing Grant
AToL: Collaborative Research: Systematics of Cypriniformes, Earth's Most Diverse Clade of Freshwater Fishes
AToL:合作研究:鲤形目(地球上最多样化的淡水鱼分支)的系统学
- 批准号:
0431290 - 财政年份:2004
- 资助金额:
$ 42.44万 - 项目类别:
Continuing Grant
A Comparative Experimental Study of Cranial Development in Teleosts
硬骨鱼颅骨发育的比较实验研究
- 批准号:
9896253 - 财政年份:1998
- 资助金额:
$ 42.44万 - 项目类别:
Continuing Grant
相似国自然基金
强化产学研协同 助推重庆市生物医药产业创新发展策略研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
sgp130Fc联合PD-L1单抗协同抑制HCC的生物学功能及分子机制研究
- 批准号:2024Y9629
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
通用转录因子 GTF2I 协同YAP/TEAD4 促进结直肠癌发生的生物学功能与机制
研究
- 批准号:24ZR1449100
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于嗜盐菌群生态协同的高盐废水碳/氮/硫同步降解机理及盐度响应
机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ecDNA驱动的MYC和INSM1协同表达在维持宫颈小细胞癌生物学特性中的作用及机制研究
- 批准号:82372672
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
合成气(CO)甲烷化协同有机物厌氧消化的转化机理与微生物学机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金荞麦黄酮类化合物协同靶向 HGF/c-MET 信号通路抑制NSCLC 侵袭转移的机制研究
- 批准号:2022JJ40530
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
转录因子SP1协同YAP/TEAD促进结直肠癌发生进展的生物学功能与机制研究
- 批准号:82172916
- 批准年份:2021
- 资助金额:54.7 万元
- 项目类别:面上项目
微泡协同低频超声力生物学效应与过高热联合增强肿瘤免疫治疗研究
- 批准号:82061148015
- 批准年份:2020
- 资助金额:200 万元
- 项目类别:国际(地区)合作与交流项目
CYP3A在人类胆汁酸宿主-肠道微生物协同代谢中的生物学功能研究及其药物代谢组学转化探究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:
相似海外基金
Collaborative Research: IMPLEMENTATION: Broadening participation of marginalized individuals to transform SABER and biology education
合作研究:实施:扩大边缘化个人的参与,以改变 SABER 和生物教育
- 批准号:
2334954 - 财政年份:2024
- 资助金额:
$ 42.44万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Summer Undergraduate Research Program in RNA and Genome Biology (REU-RGB)
合作研究:REU 网站:RNA 和基因组生物学暑期本科生研究计划 (REU-RGB)
- 批准号:
2349255 - 财政年份:2024
- 资助金额:
$ 42.44万 - 项目类别:
Continuing Grant
Collaborative Research: IMPLEMENTATION: Broadening participation of marginalized individuals to transform SABER and biology education
合作研究:实施:扩大边缘化个人的参与,以改变 SABER 和生物教育
- 批准号:
2334955 - 财政年份:2024
- 资助金额:
$ 42.44万 - 项目类别:
Standard Grant
Collaborative Research: Design: Strengthening Inclusion by Change in Building Equity, Diversity and Understanding (SICBEDU) in Integrative Biology
合作研究:设计:通过改变综合生物学中的公平、多样性和理解(SICBEDU)来加强包容性
- 批准号:
2335235 - 财政年份:2024
- 资助金额:
$ 42.44万 - 项目类别:
Standard Grant
Collaborative Research: IMPLEMENTATION: Broadening participation of marginalized individuals to transform SABER and biology education
合作研究:实施:扩大边缘化个人的参与,以改变 SABER 和生物教育
- 批准号:
2334952 - 财政年份:2024
- 资助金额:
$ 42.44万 - 项目类别:
Standard Grant
Collaborative Research: IMPLEMENTATION: Broadening participation of marginalized individuals to transform SABER and biology education
合作研究:实施:扩大边缘化个人的参与,以改变 SABER 和生物教育
- 批准号:
2334951 - 财政年份:2024
- 资助金额:
$ 42.44万 - 项目类别:
Standard Grant
Collaborative Research: IMPLEMENTATION: Broadening participation of marginalized individuals to transform SABER and biology education
合作研究:实施:扩大边缘化个人的参与,以改变 SABER 和生物教育
- 批准号:
2334953 - 财政年份:2024
- 资助金额:
$ 42.44万 - 项目类别:
Standard Grant
Collaborative Research: Design: Strengthening Inclusion by Change in Building Equity, Diversity and Understanding (SICBEDU) in Integrative Biology
合作研究:设计:通过改变综合生物学中的公平、多样性和理解(SICBEDU)来加强包容性
- 批准号:
2335236 - 财政年份:2024
- 资助金额:
$ 42.44万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Summer Undergraduate Research Program in RNA and Genome Biology (REU-RGB)
合作研究:REU 网站:RNA 和基因组生物学暑期本科生研究计划 (REU-RGB)
- 批准号:
2349254 - 财政年份:2024
- 资助金额:
$ 42.44万 - 项目类别:
Continuing Grant
Collaborative Research: Using a Self-Guided Online Intervention to Address Student Fear of Negative Evaluation in Active Learning Undergraduate Biology Courses
合作研究:利用自我引导的在线干预来解决学生在主动学习本科生物学课程中对负面评价的恐惧
- 批准号:
2409880 - 财政年份:2023
- 资助金额:
$ 42.44万 - 项目类别:
Standard Grant