Transforming pool boiling into a pumpless self-sustained flow boiling system for efficient cooling at high heat fluxes

将池沸腾转变为无泵自持流动沸腾系统,以在高热通量下进行高效冷却

基本信息

  • 批准号:
    2022614
  • 负责人:
  • 金额:
    $ 32.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Current trend of electronics miniaturization introduces higher heat generation rates while substantially reducing surface area for heat dissipation. Phase change cooling with pool boiling is an attractive cooling method. Flow boiling is more efficient but requires a pump, which makes it more complex. This project presents an innovative concept that transforms pool boiling into a self-sustained pumpless flow boiling system and dramatically improves cooling performance. It utilizes a tapered gap in which a bubble expands in a preferential direction of increasing flow area and creates a self-sustained flow over the heater surface. The proposed work will provide thorough understanding of the underlying physics and enable optimal designs with different fluids for dramatically improving heat dissipation. It will offer educational opportunities to undergraduate and graduate students, while creating a new outreach activity "TinkerEngLab" with hands-on experience to minority and women students. The team will participate in an outreach activity called Beyond 9.8 for middle school students from underprivileged schools.The goal of the project is to develop a fundamental understanding of the fluid flow and heat transfer mechanisms that drive the self-sustained flow as a bubble grows and expands in a tapered gap. It will be accomplished through – 1) analytical work to establish the link between heat transfer around a growing bubble, pressure recovery and pressure drop in the tapered microgap, 2) numerical work to provide insight into bubble growth and instantaneous pressure field, and 3) experimental work for validation and practical data. Fundamental information on microlayer formation under a bubble and pressure distribution at the wall at various stages of bubble growth will be obtained. The numerical simulation of squeezing bubble will utilize advanced code developed in the lab to predict pressure field in the tapered microgap under dynamic conditions, and these will be experimentally validated by pressure mapping using micro-electromechanical sensors and high-speed visualization. The findings from the numerical study will be incorporated in developing a theoretical bubble squeezing model for flow dynamics and heat transfer. The knowledge and the model will provide design theories for developing highly efficient cooling systems with different fluids under different operating conditions. The work is expected to introduce a paradigm shift as pool boiling will no longer be limited by a stagnant pool of liquid, but will incorporate flow for achieving unprecedented cooling performance without requiring a pump. Its main application includes electronics cooling, but the work will open up new avenues in industrial and commercial applications as well.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
电子器件小型化的当前趋势引入了更高的发热率,同时显著减少了用于散热的表面积。池沸腾相变冷却是一种很有吸引力的冷却方式。流动沸腾更有效,但需要泵,这使得它更复杂。该项目提出了一个创新的概念,将池沸腾转化为一个自我维持的无泵流动沸腾系统,并显着提高冷却性能。它利用了一个锥形间隙,其中气泡在增加流动面积的优先方向上膨胀,并在加热器表面上产生自维持流动。拟议的工作将提供对基础物理的透彻理解,并实现不同流体的优化设计,以显著改善散热。它将为本科生和研究生提供教育机会,同时创建一个新的外联活动“TinkerEngLab”,为少数民族学生和女学生提供实践经验。该团队将参加一项名为Beyond 9.8的面向贫困学校中学生的外展活动。该项目的目标是对流体流动和传热机制进行基本了解,这些机制是气泡在锥形间隙中生长和膨胀时驱动自我维持流动的机制。它将通过以下方式来完成:1)分析工作,以建立在逐渐变细的微间隙中围绕生长的气泡的热传递、压力恢复和压降之间的联系; 2)数值工作,以提供对气泡生长和瞬时压力场的洞察;以及3)实验工作,以验证和实际数据。将获得气泡下微层形成的基本信息以及气泡生长各个阶段壁面压力分布。挤压气泡的数值模拟将利用实验室开发的先进代码来预测动态条件下锥形微间隙中的压力场,并通过使用微机电传感器的压力映射和高速可视化来实验验证。从数值研究的结果将被纳入开发一个理论气泡挤压模型的流动动力学和传热。这些知识和模型将为开发在不同工况下使用不同流体的高效冷却系统提供设计理论。这项工作预计将引入一种范式转变,因为池沸腾将不再受到液体停滞池的限制,而是将在不需要泵的情况下实现前所未有的冷却性能。其主要应用包括电子冷却,但这项工作也将为工业和商业应用开辟新的途径。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Satish Kandlikar其他文献

Satish Kandlikar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Satish Kandlikar', 18)}}的其他基金

EAGER: A CFD based thermal imaging technique for early breast cancer detection- Development and clinical assessment
EAGER:基于 CFD 的热成像技术,用于早期乳腺癌检测 - 开发和临床评估
  • 批准号:
    1640309
  • 财政年份:
    2016
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Standard Grant
UNS: Dynamic Contact Line Region Heat Transfer and Interface Behavior at High Heat Fluxes Through a Controlled Oscillating Meniscus
UNS:通过受控振荡弯月面实现高热通量下的动态接触线区域传热和界面行为
  • 批准号:
    1511314
  • 财政年份:
    2015
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Standard Grant
Ultra high boiling performance on nano/microstructured surfaces through electrodeposition of copper and graphene
通过铜和石墨烯的电沉积在纳米/微米结构表面上实现超高沸点性能
  • 批准号:
    1335927
  • 财政年份:
    2013
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Standard Grant
Enhanced Flow Boiling Heat Transfer at Microscale for Stable, High Heat Flux Removal
增强微尺度流动沸腾传热,实现稳定、高热通量去除
  • 批准号:
    1236062
  • 财政年份:
    2012
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Standard Grant
I-Corps: Flexible, Low Cost Cooling Technology for LED Lighting
I-Corps:灵活、低成本的 LED 照明冷却技术
  • 批准号:
    1157904
  • 财政年份:
    2011
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Standard Grant
ASME 2011 International Conference on Nanochannels, Microchannels and Minichannels, June 19-22, 2011, Edmonton, Canada
ASME 2011 纳米通道、微通道和迷你通道国际会议,2011 年 6 月 19-22 日,加拿大埃德蒙顿
  • 批准号:
    1127689
  • 财政年份:
    2011
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Standard Grant
2010 International Conference on Nanochannels, Microchannels, and Minichannels - June 22-24, 2010 in Montreal, Canada
2010 年纳米通道、微通道和迷你通道国际会议 - 2010 年 6 月 22-24 日在加拿大蒙特利尔举行
  • 批准号:
    1021278
  • 财政年份:
    2010
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Standard Grant
Seventh International conference on Nanochannels, Microchannels and Minichannels
第七届纳米通道、微通道和迷你通道国际会议
  • 批准号:
    0903301
  • 财政年份:
    2009
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Standard Grant
Sixth International conference on Nanochannels, Microchannels and Minichannels
第六届纳米通道、微通道和迷你通道国际会议
  • 批准号:
    0804972
  • 财政年份:
    2008
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Standard Grant
An Anti-Ffouling Smart Surface With Controllable Nanostructures For IC-Cooling and MEMS Applications
用于 IC 冷却和 MEMS 应用的具有可控纳米结构的防污智能表面
  • 批准号:
    0802100
  • 财政年份:
    2008
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Pool-seq的洋紫荆花色候选基因的鉴定
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
纳米涂层表面上池沸腾防垢和强化传热的机理研究
  • 批准号:
    20876106
  • 批准年份:
    2008
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目

相似海外基金

Elucidation of the whole picture and heat transfer process of pool boiling phenomenon in liquid hydrogen from atmospheric to critical pressure
阐明液氢从常压到临界压力池沸腾现象的全貌及传热过程
  • 批准号:
    23H01349
  • 财政年份:
    2023
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Universal Dynamics of Thermal Fluctuations in Pool Boiling and Their Role in Predicting Critical Heat Flux
职业:池沸腾中热波动的普遍动力学及其在预测临界热通量中的作用
  • 批准号:
    2145075
  • 财政年份:
    2022
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Continuing Grant
Learning pool boiling physics with scientific machine learning
通过科学机器学习学习池沸腾物理
  • 批准号:
    2045322
  • 财政年份:
    2021
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Standard Grant
Clarificaion of the relation between wetting front propagation velocity and pool boiling CHF
阐明润湿锋传播速度与池沸腾CHF之间的关系
  • 批准号:
    21K03895
  • 财政年份:
    2021
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Bridging Length Scales to Unlock the Mechanistic Interdependence of Phase Interface Dynamics and Heat Transfer in Pool Boiling Processes
职业生涯:桥接长度尺度以解锁水池沸腾过程中相界面动力学和传热的机械相互依赖性
  • 批准号:
    1846165
  • 财政年份:
    2019
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Standard Grant
EAGER: Pool Boiling of Water on a Binary Surface
EAGER:二元表面上水的池沸腾
  • 批准号:
    1837853
  • 财政年份:
    2018
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Standard Grant
Study on mechanism of boiling refrigerant transition by pool boiling of immiscible mixtures in a closed narrow space
封闭狭窄空间内不混溶混合物池沸腾制冷剂沸腾转变机理研究
  • 批准号:
    17K06204
  • 财政年份:
    2017
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
EAGER: Experimental Determination of Non-Evaporating Film Thickness in Pool Boiling
EAGER:池沸腾中非蒸发膜厚度的实验测定
  • 批准号:
    1445946
  • 财政年份:
    2014
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Standard Grant
Study of Separate Effects on Pool boiling Heat Transfer Study
水池沸腾传热的单独影响研究
  • 批准号:
    436501-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
Exploring New Mechanistic Models for Pool Boiling Experiments on Nano-FIns
探索纳米鳍水池沸腾实验的新机理模型
  • 批准号:
    1134424
  • 财政年份:
    2012
  • 资助金额:
    $ 32.26万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了