EAGER: Modes in Random Media and Tissue Characterization

EAGER:随机介质和组织表征中的模式

基本信息

  • 批准号:
    2022629
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

Nontechnical abstract:Understanding wave propagation in random systems is a fundamental problem with myriad applications. This work aims to show that all wave phenomena can be reduced to simple resonance properties. The role of resonances in wave propagation will be explored in space and time in experiments, and in numerical simulations and analytical theory. It will be shown that key aspects of waves in complex systems can be described in terms of a simple sum. These findings will be utilized to characterize transport in novel systems such as photonic topological insulators. The project includes development of a new and hopefully very impactful medical imaging technique for thin sections based on a spatial map of the transmission time. These studies have implications for medical imaging, telecommunications, resource exploration, and photonic devices.Technical abstract: This projects seeks to provide a simple and comprehensive understanding of the statistics of modes and their role in wave propagation in random systems. Early work by Wigner and Dyson on the statistics of resonances, variously known as energy levels, eigenstates, quasi-normal modes, or simply as modes, focused on the probability distribution of level spacings and widths in nuclear scattering. But in open non-Hermitian systems, modes are not orthogonal, and it is the correlation between them that has the greatest impact on wave transport and energy deposition inside random systems. The role of modes in wave propagation will be explored in space and time in microwave and optical experiments, and in numerical simulations and analytical theory. The correlation between modes leads to destructive interference between modes and greatly suppresses transmission while leading to spatial and spectral correlation of the energy density within disordered media. Though the interference between modes is crucial, it was recently found that key dynamical variables, such as the transmission time, density of states and the sum of energy deposited in the sample for unit flux incident in all channels can be described as an incoherent sum over modes even in systems with dissipation and gain. These results will be utilized to characterize the limits of robust propagation along the domain wall between metacrystals with different Chern numbers in topological insulators. The project includes development of a new medical imaging modality for thin sections based on a spatial map of the transmission time, which is equal to the spectral derivative of the phase of the transmitted field. Finally, the simple functional form for the derivative of the phase will be explored as an approach to analyzing the field into the underlying modes. The results of these studies are relevant to both classical and quantum waves.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性摘要:了解随机系统中的波传播是一个具有无数应用的基本问题。这项工作的目的是表明,所有的波现象可以减少到简单的共振特性。共振在波传播中的作用将在实验中的空间和时间,以及在数值模拟和分析理论中进行探索。它将表明,波在复杂系统中的关键方面可以描述在一个简单的总和。这些发现将被用来表征新系统,如光子拓扑绝缘体中的传输。该项目包括开发一种新的,希望非常有效的医学成像技术,用于基于传输时间的空间图的薄切片。这些研究对医学成像、电信、资源勘探和光子器件都有意义。技术摘要:本项目旨在提供对随机系统中模式统计及其在波传播中的作用的简单而全面的理解。维格纳和戴森早期对共振态统计的研究主要集中在核散射中能级间距和宽度的概率分布上,共振态被称为能级、本征态、准简正模或简单地称为模。但在开放的非厄米特系统中,模式不是正交的,正是它们之间的相关性对随机系统内部的波输运和能量沉积产生了最大的影响。模式在波传播中的作用将在微波和光学实验中的空间和时间以及数值模拟和分析理论中进行探索。模式之间的相关性导致模式之间的相消干涉,并极大地抑制传输,同时导致无序介质内能量密度的空间和光谱相关性。虽然模式之间的干扰是至关重要的,它是最近发现,关键的动力学变量,如传输时间,状态密度和沉积在样品中的能量的总和,单位通量入射在所有通道中可以被描述为一个不相干的总和模式,即使在系统中的耗散和增益。 这些结果将被用来表征强大的传播沿着畴壁之间的拓扑绝缘体的不同陈数的亚晶之间的限制。该项目包括根据传输时间的空间图开发一种新的薄切片医学成像模式,该空间图等于传输场相位的光谱导数。最后,将探讨相位导数的简单函数形式,作为分析场的基本模式的方法。这些研究的结果与经典波和量子波都相关。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamics of transmission in disordered topological insulators
  • DOI:
    10.1103/physreva.103.033507
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Yuhao Kang;Yiming Huang;A. Genack
  • 通讯作者:
    Yuhao Kang;Yiming Huang;A. Genack
Wave Excitation and Dynamics in Non-Hermitian Disordered Systems
非厄米无序系统中的波激励和动力学
  • DOI:
    10.1103/physrevresearch.4.013102
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Huang, Y.;Kang, Yuhao;Genack, Azriel Z.
  • 通讯作者:
    Genack, Azriel Z.
Cavity-induced backscattering in a two-dimensional photonic topological system
  • DOI:
    10.1103/physrevresearch.2.013221
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Yuhao Kang;A. Genack
  • 通讯作者:
    Yuhao Kang;A. Genack
Characterizing random one-dimensional media with an embedded reflector via scattered waves
通过散射波表征具有嵌入式反射器的随机一维介质
  • DOI:
    10.1103/physrevb.104.104204
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    ["Yiming Huang
  • 通讯作者:
    ["Yiming Huang
Statistics of coherent waves inside media with Lévy disorder
具有Lévy无序的介质内相干波的统计
  • DOI:
    10.1103/physrevresearch.3.023035
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Razo-López, Luis A.;Genack, Azriel Z.;Gopar, Victor A.
  • 通讯作者:
    Gopar, Victor A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Azriel Genack其他文献

Azriel Genack的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Azriel Genack', 18)}}的其他基金

NSF-BSF: Global Correlation in complex structures
NSF-BSF:复杂结构中的全局相关性
  • 批准号:
    2211646
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NSF/DMR/-BSF: Universality and Control of Wave Propagation Inside Random Media
NSF/DMR/-BSF:随机介质内波传播的普遍性和控制
  • 批准号:
    1609218
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
New Perspectives on Wave Propagation in Random Media
随机介质中波传播的新视角
  • 批准号:
    1207446
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
MRI-R2: Acquistion of Microwave Network Analyzer for Studies of Global Statistics of Waves in Random Media
MRI-R2:购买微波网络分析仪,用于研究随机介质中波的全局统计
  • 批准号:
    0958772
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Speckle Evolution and Modes in Random Media
随机介质中的散斑演化和模式
  • 批准号:
    0907285
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Statistics of Electromagnetic Propagation and Localization
电磁传播和定位统计
  • 批准号:
    0538350
  • 财政年份:
    2005
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Statistics of Electromagnetic Propagation and Localization
电磁传播和定位统计
  • 批准号:
    0205186
  • 财政年份:
    2002
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Acquisition of Tunable Narrow-line Laser for Photonic Band Gap and Disordered Materials Research and Education
获取可调谐窄线激光器用于光子带隙和无序材料研究和教育
  • 批准号:
    0114224
  • 财政年份:
    2001
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Statistics of Electromagnetic Propagation and Localization
电磁传播和定位统计
  • 批准号:
    9973959
  • 财政年份:
    1999
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
U.S. France Cooperative Research: Field Dynamics in Random Media
美法合作研究:随机介质中的场动力学
  • 批准号:
    9512975
  • 财政年份:
    1996
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

含退禁闭物质中子星g-modes特性及其引力波观测效应研究
  • 批准号:
    11903013
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Braiding Dynamics of Majorana Modes
马约拉纳模式的编织动力学
  • 批准号:
    DP240100168
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Projects
The Upscaling of Tropical Pacific Ocean Rain Layers to Convection and Modes of Pacific Climate Variability
热带太平洋雨层对流的升级和太平洋气候变率的模式
  • 批准号:
    2333171
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Linear Response and Koopman Modes: Prediction and Criticality - LINK
线性响应和库普曼模式:预测和临界性 - LINK
  • 批准号:
    EP/Y026675/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: New Modes of State Governance and Mobile Communities
博士论文研究:国家治理新模式与移动社区
  • 批准号:
    2314656
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Reexamining Discourses, Representations, and Modes of Expression in Late Meiji Magazines: a Cross-disciplinary Media Study from a Trans-Russo-Japanese War Perspective
重新审视明治后期杂志中的话语、表述和表达方式:从跨俄日战争的角度进行跨学科媒体研究
  • 批准号:
    23H00619
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: BoCP-Implementation: The influence of different nutrient delivery modes on functional biodiversity of marine plankton in a changing ocean
合作研究:BoCP-实施:不同养分输送模式对变化海洋中海洋浮游生物功能生物多样性的影响
  • 批准号:
    2326029
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: The influence of different nutrient delivery modes on functional biodiversity of marine plankton in a changing ocean
合作研究:BoCP-实施:不同养分输送模式对变化海洋中海洋浮游生物功能生物多样性的影响
  • 批准号:
    2326028
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Density of Modes: A New Way to Forecast Sediment Failure
合作研究:RUI:模式密度:预测沉积物破坏的新方法
  • 批准号:
    2244615
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Discovery of phosgene and chlorine gas modes of action and therapeutic targets using chemoproteomic profiling strategies
使用化学蛋白质组学分析策略发现光气和氯气的作用模式和治疗靶点
  • 批准号:
    10883970
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Collaborative Research: Paleozoic echinoderms as model systems for the study of evolutionary modes
合作研究:古生​​代棘皮动物作为研究进化模式的模型系统
  • 批准号:
    2312211
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了