Collaborative Research: How fast do tidewater glaciers melt? Quantifying the processes that control boundary layer transport across the ice-ocean interface

合作研究:潮水冰川融化的速度有多快?

基本信息

  • 批准号:
    2023319
  • 负责人:
  • 金额:
    $ 41.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Sea-level rise will affect millions of people in coastal communities within the next several decades. Accurate predictions of how quickly it will rise is challenging because it depends on many different processes and how these processes interact with and feedback on each other. One process that may play a surprisingly large role is the effect of small swirls and eddies (only a few feet across) of warm water that control the rate of ice melt at the near-vertical cliff faces of the world’s marine-terminating (tidewater) glaciers. At these glaciers, ice flows directly into the ocean and melts underwater or calves icebergs. Melting of the ice produces freshwater that flows out near the ocean surface and drives a return flow that draws in deep warmer ocean water toward the glacier. According to current theory, increasing the rate of ice melt increases the strength at which warmer ocean water is pulled in towards the ice face, which further enhances the melting. The details of this process - particularly the small-scale dynamics near the ice face - have never been measured because the calving ice cliffs are too dangerous to make measurements. Here we propose to use a highly specialized underwater robot (a remotely operated vehicle, or “ROV”) with state-of-the-art optical and acoustic instruments to observe the melt rate and the processes that control it. One of the novel aspects is the use of “melt stakes” - 6 ft long rods that will be driven into the glacier face by the ROV and monitored continuously to determine the melt processes. These stakes then provide a frame of reference for our ROV to make a suite of detailed measurements of the shape of the glacier face, the dynamics of the currents adjacent to it, and how the ice-water interface evolves. At the same time, we will observe the local ocean environment in the fjord - the currents, salinity and temperature - which are the main ingredients we need to predict ice melt in larger-scale and climate models. Our analyses will combine field data with a high-resolution fluid-flow model that recreates the conditions along the ice with realistic water properties. The combination of model and data will be used to refine our melt predictions and verify these directly using our observed measurements. At the end of the project, we will be able to extend our results to estimate how much melt is occurring for tidewater glaciers around the globe, and how this may change in time. Beyond this importance to society and the scientific community, this grant provides broader impacts across several levels: (1) mentorship and support for two early career women (2) support for three graduate students in interdisciplinary ice-ocean studies, (3) experiential opportunities, funding, and mentorship for 45 senior-year undergraduate students, whose capstone projects will directly contribute to this project while being supervised by our gender and culturally diverse team of engineers and technical staff, (4) classroom experiments showing buoyancy and convection to engage K-12 students and the general public, and (5) two teams of high-school women will additionally be involved and make observations through Girls in Icy Fjords expeditions.Melting at the ice-ocean interface of marine-terminating glaciers influences the rate of mass loss from the world's ice sheets. In addition to contributing to sea-level rise, details of the melt process dictate the depth at which fresh meltwater enters the ocean (which in turn affects ocean circulation on a variety of scales) and alters calving rates. Existing theory suggests that the rate of submarine melting along these ice faces is set by the strength of subglacial discharge. However, recent observations find unexpectedly high melt rates over broad sections of glacier termini, even outside discharge plume areas. The observed order of magnitude discrepancies between observed and predicted melt rates suggests the presence of energetic dynamics elsewhere along the ice face that drive near-ice turbulent flows. We hypothesize that this discrepancy arises from differences in the rate-controlling physics within the boundary layers. Current turbulent transfer coefficients were derived from stable boundary layers. Yet on vertical glacier ice faces, boundary layers have strong buoyant forcing and marginal stability that likely produce dynamics not captured by laboratory or idealized models. Because buoyant meltwater fluxes provide kinetic energy for near-boundary outer flows -- and because enhancement of those flows leads to enhanced melting -- there is potential for strong positive feedbacks in the dynamics. As a result, small errors in the melt parameters or the parameterization functional form can have significant consequences to the total melt calculation. No studies have yet to make observations immediately next to near-vertical ice faces, or measure melt dynamics with the resolution necessary to investigate these dynamical feedbacks. This grant supports the development of a first-of-its-kind network of coordinated underwater acoustic, optical and in-situ unmanned sensors to be deployed at LeConte Glacier, Alaska. Using methods that meld glaciology, oceanography, and robotics, these systems will collect the first geophysical observations of the turbulent boundary layer at a near-vertical glacier face. Specifically, we will directly measure velocity, salinity and temperature through a buoyancy-forced near-vertical boundary layer and relate these to observations of the subsurface ice morphology (e.g., slope, roughness) across several spatial scales. By combining these data with high-resolution realistic simulations, we will characterize the dominant contributions to boundary layer turbulence and explicitly relate these to local melt rates. Our ultimate goal is to determine what parameters need to be measured (e.g., fjord u,T,S) over what time and space scales, as well as what assumptions can be made in order to connect dynamics from the small-scale ice interface to the large-scale ocean and glacier forcing. This grant builds an observational capacity that does not exist at present. Measurements will span a sufficient range of the parameter space (in ocean temperature, velocity variance and ice morphology) for us and others to test existing and advance new melt models that underlie many ice-ocean community models.This award is co-funded by the Arctic Natural Sciences Program and the Physical Oceanography Program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Relationship Between Submarine Melt and Subglacial Discharge From Observations at a Tidewater Glacier
  • DOI:
    10.1029/2021jc018204
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Jackson, Rebecca H.;Motyka, Roman J.;Kienholz, Christian
  • 通讯作者:
    Kienholz, Christian
Internal Gravity Waves Generated by Subglacial Discharge: Implications for Tidewater Glacier Melt
  • DOI:
    10.1029/2022gl102426
  • 发表时间:
    2023-06-28
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Cusack, J. M.;Jackson, R. H.;Amundson, J. M.
  • 通讯作者:
    Amundson, J. M.
Subglacial Discharge Reflux and Buoyancy Forcing Drive Seasonality in a Silled Glacial Fjord
  • DOI:
    10.1029/2021jc018355
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Hager, Alexander O.;Sutherland, David A.;Nash, Jonathan D.
  • 通讯作者:
    Nash, Jonathan D.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rebecca Jackson其他文献

Realizing the potential of a strengths‐based approach in family support with young people and their parents
认识到基于优势的方法为年轻人及其父母提供家庭支持的潜力
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Devaney;Bernadine Brady;R. Crosse;Rebecca Jackson
  • 通讯作者:
    Rebecca Jackson
A383 - Eliminating Routine Intra-operative Foley Catheters May Reduce Post-Operative Urinary Tract Infections in Bariatric Surgery Patients
  • DOI:
    10.1016/j.soard.2018.09.306
  • 发表时间:
    2018-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alexis Cralley;Rebecca Jackson;Fredric Pieracci
  • 通讯作者:
    Fredric Pieracci
Lateral placentation and adverse perinatal outcomes
  • DOI:
    10.1016/j.placenta.2020.08.012
  • 发表时间:
    2020-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ludmila Porto;Amir Aviram;Rebecca Jackson;Mara Carson;Nir Melamed;Jon Barrett;Elad Mei-Dan
  • 通讯作者:
    Elad Mei-Dan
Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer
全基因组关联研究确定了与胰腺癌易感性相关的 ABO 基因座的变体
  • DOI:
    10.1038/ng.429
  • 发表时间:
    2009-08-02
  • 期刊:
  • 影响因子:
    29.000
  • 作者:
    Laufey Amundadottir;Peter Kraft;Rachael Z Stolzenberg-Solomon;Charles S Fuchs;Gloria M Petersen;Alan A Arslan;H Bas Bueno-de-Mesquita;Myron Gross;Kathy Helzlsouer;Eric J Jacobs;Andrea LaCroix;Wei Zheng;Demetrius Albanes;William Bamlet;Christine D Berg;Franco Berrino;Sheila Bingham;Julie E Buring;Paige M Bracci;Federico Canzian;Françoise Clavel-Chapelon;Sandra Clipp;Michelle Cotterchio;Mariza de Andrade;Eric J Duell;John W Fox Jr;Steven Gallinger;J Michael Gaziano;Edward L Giovannucci;Michael Goggins;Carlos A González;Göran Hallmans;Susan E Hankinson;Manal Hassan;Elizabeth A Holly;David J Hunter;Amy Hutchinson;Rebecca Jackson;Kevin B Jacobs;Mazda Jenab;Rudolf Kaaks;Alison P Klein;Charles Kooperberg;Robert C Kurtz;Donghui Li;Shannon M Lynch;Margaret Mandelson;Robert R McWilliams;Julie B Mendelsohn;Dominique S Michaud;Sara H Olson;Kim Overvad;Alpa V Patel;Petra H M Peeters;Aleksandar Rajkovic;Elio Riboli;Harvey A Risch;Xiao-Ou Shu;Gilles Thomas;Geoffrey S Tobias;Dimitrios Trichopoulos;Stephen K Van Den Eeden;Jarmo Virtamo;Jean Wactawski-Wende;Brian M Wolpin;Herbert Yu;Kai Yu;Anne Zeleniuch-Jacquotte;Stephen J Chanock;Patricia Hartge;Robert N Hoover
  • 通讯作者:
    Robert N Hoover
Caring for rape victims
  • DOI:
    10.1007/bf01323992
  • 发表时间:
    1980-03-01
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Peter DiVasto;Arthur Kaufman;Rebecca Jackson;Lois Ballen;D'Alene Seymour;Pat Duphorne
  • 通讯作者:
    Pat Duphorne

Rebecca Jackson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rebecca Jackson', 18)}}的其他基金

Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
  • 批准号:
    2234522
  • 财政年份:
    2024
  • 资助金额:
    $ 41.43万
  • 项目类别:
    Standard Grant
Collaborative Research: GreenFjord-FIBER, Observing the Ice-Ocean Interface with Exceptional Resolution
合作研究:GreenFjord-FIBER,以卓越的分辨率观测冰海界面
  • 批准号:
    2338503
  • 财政年份:
    2024
  • 资助金额:
    $ 41.43万
  • 项目类别:
    Standard Grant
Collaborative Research: GLACIOME: Developing a comprehensive model of the coupled glacier-ocean-melange system
合作研究:GLACIOME:开发冰川-海洋-混合岩耦合系统的综合模型
  • 批准号:
    2025789
  • 财政年份:
    2021
  • 资助金额:
    $ 41.43万
  • 项目类别:
    Standard Grant
Investigating the exchange flow in glacial fjords through an estuarine lens
通过河口透镜研究冰川峡湾的交换流
  • 批准号:
    2023415
  • 财政年份:
    2020
  • 资助金额:
    $ 41.43万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    $ 41.43万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321480
  • 财政年份:
    2024
  • 资助金额:
    $ 41.43万
  • 项目类别:
    Continuing Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 41.43万
  • 项目类别:
    Standard Grant
Collaborative Research: How do plants control sperm nuclear migration for successful fertilization?
合作研究:植物如何控制精子核迁移以成功受精?
  • 批准号:
    2334517
  • 财政年份:
    2024
  • 资助金额:
    $ 41.43万
  • 项目类别:
    Standard Grant
Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
  • 批准号:
    2309310
  • 财政年份:
    2024
  • 资助金额:
    $ 41.43万
  • 项目类别:
    Continuing Grant
Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
  • 批准号:
    2309308
  • 财政年份:
    2024
  • 资助金额:
    $ 41.43万
  • 项目类别:
    Continuing Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 41.43万
  • 项目类别:
    Standard Grant
Collaborative Research: A Multipronged Approach to Investigate how Hydrography and Mixing Shape Productive Fjord Ecosystems in Greenland
合作研究:采用多管齐下的方法来研究水文学和混合如何塑造格陵兰岛富有生产力的峡湾生态系统
  • 批准号:
    2335928
  • 财政年份:
    2024
  • 资助金额:
    $ 41.43万
  • 项目类别:
    Standard Grant
Collaborative Research: A Multipronged Approach to Investigate how Hydrography and Mixing Shape Productive Fjord Ecosystems in Greenland
合作研究:采用多管齐下的方法来研究水文学和混合如何塑造格陵兰岛富有生产力的峡湾生态系统
  • 批准号:
    2335929
  • 财政年份:
    2024
  • 资助金额:
    $ 41.43万
  • 项目类别:
    Standard Grant
Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
  • 批准号:
    2309309
  • 财政年份:
    2024
  • 资助金额:
    $ 41.43万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了