Collaborative Research: Dynamic similarity or size proportionality? Sensory ecological adaptations of Euchaeta to viscosity

协作研究:动态相似性还是大小比例?

基本信息

  • 批准号:
    2023601
  • 负责人:
  • 金额:
    $ 65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Small planktonic organisms like copepods live at the interface of laminar and turbulent regimes, which is a fluid environment that is not well understood. It is not turbulent, like the rumbly wake behind a ski boat. It is not predictable laminar flow, like the steady flow creeping by a smooth stone. In this transitional environment, even small changes in the viscosity of the water can impact an organism’s behavior and sensory perception in unexpected ways. Waters in the polar regions have twice the viscosity as that in the subtropics. In addition to viscosity there are thermal effects on physiology and differences in organism size. Nevertheless, pilot studies indicate that polar species are dynamically similar to the subtropical ones. This suggests their fluid-object interactions with their surrounding environment is very similar from the poles to the subtropics. The goal of this study is to measure nerve impulse conduction velocities, respiration rates, swimming and escape speeds, and muscle mass to determine whether and what metabolic compensation is occurring to maintain this dynamic similarity. The broader impacts include training early career scientists at different stages of their education to work across STEM disciplines. Eight trainees ranging from undergraduate to post-doctoral levels are working within the fields of fluid dynamics, marine biology and neurophysiology to address questions surrounding the evolution of key organisms in the ocean. By creating an educational ladder in the lab, students are learning to mentor other students as they learn the scientific method. Outreach is focused on incorporating results from this project into exhibits at the Museum of Design Atlanta, Georgia to share how planktonic organisms can become part of innovative design using solutions from nature to improve the way problems are solved. Flow regimes at intermediate Reynolds number are characterized by the transition between viscous and inertia-dominated realms. Zooplankton like copepods operate within this interface. These small organisms detect prey, predators and mates by sensing small changes in the fluid that surrounds them. However, fluid viscosity alters the fluid signals that are created and perceived by the organisms and how this affects the performance of individual copepods is poorly understood. The goal of this project is to investigate the role viscosity plays as an evolutionary force leading to adaptations in body size, volume of flow field, sensor length and neural function, swimming speeds and muscle mass. The model system for this study is a group of three species in the genus Euchaeta. The target species have evolved to live in a gradient of fluid regimes spanning temperatures from 0 to 23ºC and viscosities from 1.84 to 1 Centistokes. The species vary in length by three-fold and swim at speeds from less than 1 to over 103 millimeters per second. Nerve impulse conduction velocities, respiration rates, swimming and escape speeds, and muscle mass are being measured experimentally under a range of viscosities to elucidate underlying mechanisms of metabolic compensation involved in the maintenance of dynamic similarity from the subtropics to the poles. The focus on the congeners offers a natural experiment to examine the effects of viscosity in an organism that lives at intermediate Reynolds number where viscous forces are important.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
像桡足类这样的小型浮游生物生活在层流和湍流状态的界面上,这是一种尚未被很好理解的流体环境。它不像滑雪船后面的隆隆尾迹那样汹涌。它不是可预测的层流,就像平稳的水流从光滑的石头上流过一样。在这种过渡环境中,即使是水粘度的微小变化也会以意想不到的方式影响生物体的行为和感官知觉。极地地区的沃茨的粘度是亚热带地区的两倍。除了粘度之外,还有对生理学的热效应和生物体大小的差异。然而,试点研究表明,极地物种在动态上与亚热带物种相似。这表明它们与周围环境的流体-物体相互作用从极地到亚热带非常相似。本研究的目的是测量神经冲动传导速度、呼吸速率、游泳和逃逸速度以及肌肉质量,以确定是否发生代谢补偿以及发生何种代谢补偿来维持这种动态相似性。更广泛的影响包括培训处于不同教育阶段的早期职业科学家,以跨STEM学科工作。8名从本科生到博士后的受训人员正在流体动力学、海洋生物学和神经生理学领域工作,以解决围绕海洋中关键生物进化的问题。通过在实验室中创建一个教育阶梯,学生们正在学习指导其他学生,因为他们学习的科学方法。外联活动的重点是将该项目的成果纳入格鲁吉亚亚特兰大设计博物馆的展览中,以分享水生生物如何成为创新设计的一部分,利用自然界的解决方案来改善解决问题的方式。 在中间雷诺数的流动状态的特点是由粘性和惯性主导的领域之间的过渡。像桡足类这样的浮游动物在这个界面中活动。这些小生物通过感知周围液体的微小变化来发现猎物、捕食者和配偶。然而,流体粘度改变了生物体产生和感知的流体信号,这如何影响个体桡足类的表现还知之甚少。该项目的目标是研究粘度作为一种进化力量,导致身体大小,流场体积,传感器长度和神经功能,游泳速度和肌肉质量的适应。本研究的模式系统是Euchaeta属的三个物种。目标物种已经进化到生活在温度从0到23ºC、粘度从1.84到1厘斯的梯度流体状态中。这些物种的长度相差三倍,游泳速度从每秒不到1毫米到超过103毫米不等。神经冲动传导速度,呼吸速率,游泳和逃逸速度,肌肉质量正在实验测量粘度范围内,以阐明潜在的代谢补偿机制,参与维护从亚热带到两极的动态相似性。对同系物的关注提供了一个自然的实验,以研究粘性对生活在中等雷诺数下的生物体的影响,在这种情况下粘性力很重要。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Fields其他文献

Human Milk Oligosaccharides Are Stable Over One-Week of Lactation and Over Six-Hours Following a Standardized Meal
  • DOI:
    10.1093/cdn/nzab046_016
  • 发表时间:
    2021-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Paige Berger;Jasmine Plows;Roshonda Jones;Tanya Alderete;Kelsey Schmidt;Lars Bode;David Fields;Michael Goran
  • 通讯作者:
    Michael Goran

David Fields的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Fields', 18)}}的其他基金

REU Site: Bigelow Laboratory for Ocean Sciences - Undergraduate Research Experience in the Gulf of Maine and the World Ocean
REU 站点:毕格罗海洋科学实验室 - 缅因湾和世界海洋的本科生研究经验
  • 批准号:
    2349230
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
REU Site: Bigelow Laboratory for Ocean Sciences - Undergraduate Research Experience in the Gulf of Maine and the World Ocean
REU 站点:毕格罗海洋科学实验室 - 缅因湾和世界海洋的本科生研究经验
  • 批准号:
    1950443
  • 财政年份:
    2020
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
Collaborative Research: Individual Based Approaches to Understanding Krill Distributions and Aggregations
合作研究:了解磷虾分布和聚集的基于个体的方法
  • 批准号:
    1840949
  • 财政年份:
    2019
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
REU Site: Bigelow Laboratory for Ocean Sciences - Undergraduate Research Experience in the Gulf of Maine and the World Ocean
REU 站点:毕格罗海洋科学实验室 - 缅因湾和世界海洋的本科生研究经验
  • 批准号:
    1460861
  • 财政年份:
    2015
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
Collaborative Research: Navigating through space in turbulence tubes: Copepod responses to Burgers' vortex
合作研究:在湍流管中穿越空间:桡足类对伯格斯涡流的反应
  • 批准号:
    1537579
  • 财政年份:
    2015
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
REU Site: Bigelow Laboratory for Ocean Sciences - Undergraduate Research Experience in the Gulf of Maine and the World Ocean
REU 站点:毕格罗海洋科学实验室 - 缅因湾和世界海洋的本科生研究经验
  • 批准号:
    1156740
  • 财政年份:
    2012
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
REU Site: Bigelow Laboratory for Ocean Sciences - Undergraduate Research Experience in the Gulf of Maine and the World Ocean
REU 站点:毕格罗海洋科学实验室 - 缅因湾和世界海洋的本科生研究经验
  • 批准号:
    0755142
  • 财政年份:
    2008
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Collaborative Research: The Role of Phytoplankton Ballast Material in Deterring Copepod Grazing
合作研究:浮游植物压载材料在阻止桡足类吃草中的作用
  • 批准号:
    0648346
  • 财政年份:
    2007
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
COLLAB: From Structure to Information in Mechanosensory Systems. The role of Sensor Morphology in Detecting Fluid Signals.
协作:从机械感觉系统的结构到信息。
  • 批准号:
    0718832
  • 财政年份:
    2007
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
Mechanoreception in Marine Copepods: Detecting Complex Fluid Signals
海洋桡足类的机械感受:检测复杂的流体信号
  • 批准号:
    0514593
  • 财政年份:
    2004
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318855
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
  • 批准号:
    2342936
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
  • 批准号:
    2342937
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347344
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318851
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402283
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318854
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402284
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了