EAGER: Soil Microhabitats and the Generation, Maintenance, and Significance of Microbial Diversity

EAGER:土壤微生境和微生物多样性的产生、维持和意义

基本信息

  • 批准号:
    2024230
  • 负责人:
  • 金额:
    $ 14.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Earth’s soils host extraordinary biological diversity, and soil microbes such as bacteria and fungi govern many important processes, including cycling nutrients, decomposing dead plants and animals, and producing or consuming atmospheric gases such as CO2 and methane. Soils are generally poorly mixed environments and can be extremely variable in both time and space, with fundamental properties such as pH or nutrient availability changing over less than 1 millimeter, and water and oxygen content varying dramatically over the course of just minutes. This spatial and temporal variation is likely a core part of the reason why soils harbor such a vast diversity of microbes - the simultaneous existence of a multitude of different “microhabitats” within the soil supports a wide range of ecological strategies. The simple fact that soils are poorly mixed is likely also a core reason soils are so microbially diverse: specific organisms or groups of microbes that would be out-competed by other microbes in a well-mixed environment may thrive when they are isolated within soil aggregates or pores, simply because they are disconnected from other similar microhabitats. The goal of this research is to characterize the relative importance of the different processes that generate and maintain the exceptional microbial diversity found in soils. The proposed research will address a critical question - which specific processes and characteristics of the soil environment drive this great biodiversity? There is inherent risk in attempting to identify these phenomena at the micro-scale. The project will provide research training for a graduate student. The results from this study could have a high payoff through better management and understanding of soil microbes and the processes that they govern, and could also enhance or transform our understanding of the ecological processes structuring the microbial communities of numerous other environments, ranging from the ocean to the human body. In conjunction with the proposed experiments, researchers will develop an explorable virtual reality (VR) soil environment. This VR experience will engender a sense of scale: the viewer will start at human-scale, from which they will zoom in to the aggregate, where they will be able to enter and explore the soil pore network at the scale of a microbe using a VR headset.In this EAGER project, the PI proposes to use creative and high risk approaches to test mechanistic aspects of how changes in microbial diversity at the microscale might result in changes in ecosystem function. The conceptual and research designs to address this challenging question will have to tackle making linkages between carbon use efficiency, diversity and ecosystem function. The key questions of this research are: What are the relative contributions of selection, dispersal, and drift in determining soil bacterial community composition in (A) unmixed vs. frequently mixed soil? (B) ambient vs. low-oxygen conditions? (C) unsaturated vs. saturated conditions? The corresponding hypotheses are: (A) Mixing soil will result in increasingly similar communities, largely through increased dispersal; (B) Low-oxygen conditions will impose selective pressure for communities adapted to those conditions, but will not significantly affect dispersal; (C) The selective effects of the reduced oxygen that accompanies increased moisture will be greater than the increased dispersal facilitated by moisture. The approach will use natural soil communities in “microhabitats” of 50 mg in a nested series of experiments where the microhabitat moisture and oxygen conditions are adjusted, while also varying frequencies at which soils are mixed. The researchers will draw on high-throughput amplicon sequencing to characterize bacterial community composition and statistical modelling to quantify the relative importance of selection, dispersal, and drift in determining soil bacterial community composition. A graduate student will be trained in microbial ecology methods as part of these studies. Using a 3D model of a soil aggregate created using X-ray scanning and modelling, the the PI and her team will develop a VR experience that will allow viewers to “take a tour” of the world of a microbe.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地球上的土壤拥有非同寻常的生物多样性,细菌和真菌等土壤微生物控制着许多重要的过程,包括循环营养物质,分解死亡的动植物,以及产生或消耗二氧化碳和甲烷等大气气体。土壤通常是很差的混合环境,在时间和空间上都可能非常可变,基本性质,如pH或养分有效性的变化不到1毫米,水和氧含量在短短几分钟内变化很大。这种时空变化很可能是土壤中微生物种类繁多的核心原因--土壤中同时存在的多种不同的“微生境”支持广泛的生态策略。土壤混合不良的简单事实可能也是土壤微生物多样性如此之大的核心原因:在混合良好的环境中,特定的生物或微生物群可能会在混合良好的环境中被其他微生物击败,当它们被隔离在土壤团聚体或孔隙中时,可能会茁壮成长,这仅仅是因为它们与其他类似的微生境隔绝了。这项研究的目的是确定不同过程的相对重要性,这些过程产生和维持在土壤中发现的特殊微生物多样性。这项拟议的研究将解决一个关键问题--土壤环境的哪些特定过程和特征驱动了这种巨大的生物多样性?试图在微观层面上识别这些现象存在内在风险。该项目将为一名研究生提供研究培训。这项研究的结果可以通过更好地管理和了解土壤微生物及其所管理的过程来获得高回报,还可以增强或改变我们对构建从海洋到人体等许多其他环境中微生物群落的生态过程的理解。与拟议的实验相结合,研究人员将开发一种可探索的虚拟现实(VR)土壤环境。这种VR体验将产生一种规模感:观看者将从人类尺度开始,从人类尺度放大到集合体,在那里他们将能够进入并使用VR耳机在微生物尺度上探索土壤孔隙网络。在这个渴望的项目中,PI建议使用创造性和高风险的方法来测试微观尺度上微生物多样性的变化如何导致生态系统功能变化的机械方面。解决这一具有挑战性的问题的概念和研究设计必须解决碳利用效率、多样性和生态系统功能之间的联系。这项研究的关键问题是:在(A)未混合土壤和频繁混合土壤中,选择、扩散和漂移在确定土壤细菌群落组成方面的相对贡献是什么?(B)环境条件与低氧条件?(C)不饱和状态与饱和状态?相应的假设是:(A)混合土壤将导致群落越来越相似,主要是通过增加扩散;(B)低氧条件将对适应这些条件的群落施加选择压力,但不会显著影响扩散;(C)随着湿度增加而减少的氧气的选择效果将大于水分促进的扩散增加。该方法将在一系列嵌套的实验中使用50毫克的“微生境”中的自然土壤群落,其中微生境的水分和氧气条件被调整,同时土壤混合的频率也不同。研究人员将利用高通量扩增子测序来表征细菌群落组成,并建立统计模型来量化选择、扩散和漂移在确定土壤细菌群落组成中的相对重要性。作为这些研究的一部分,一名研究生将接受微生物生态学方法的培训。使用使用X射线扫描和建模创建的土壤集合体的3D模型,PI和她的团队将开发一种虚拟现实体验,使观众能够对微生物世界进行一次“旅行”。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tillage homogenizes soil bacterial communities in microaggregate fractions by facilitating dispersal
耕作通过促进分散使微团聚体部分中的土壤细菌群落均质化
  • DOI:
    10.1016/j.soilbio.2023.109181
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    West, Jaimie R.;Lauer, Joseph G.;Whitman, Thea
  • 通讯作者:
    Whitman, Thea
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thea Whitman其他文献

Biochar in climate change mitigation
生物炭在气候变化缓解中的作用
  • DOI:
    10.1038/s41561-021-00852-8
  • 发表时间:
    2021-12-02
  • 期刊:
  • 影响因子:
    16.100
  • 作者:
    Johannes Lehmann;Annette Cowie;Caroline A. Masiello;Claudia Kammann;Dominic Woolf;James E. Amonette;Maria L. Cayuela;Marta Camps-Arbestain;Thea Whitman
  • 通讯作者:
    Thea Whitman
Earthworm co-invasion by emAmynthas tokioensis/em and emAmynthas agrestis/em affects soil microaggregate bacterial communities
东京远环蚓/和/及普通远环蚓共同入侵蚯蚓对土壤微团聚体细菌群落的影响
  • DOI:
    10.1016/j.apsoil.2023.105224
  • 发表时间:
    2024-03-01
  • 期刊:
  • 影响因子:
    5.000
  • 作者:
    Jaimie R. West;Bradley M. Herrick;Thea Whitman
  • 通讯作者:
    Thea Whitman

Thea Whitman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thea Whitman', 18)}}的其他基金

RAPID: Effects of changing wildfire regimes on soil carbon fluxes during and following fire
RAPID:改变野火状况对火灾期间和火灾后土壤碳通量的影响
  • 批准号:
    2420420
  • 财政年份:
    2024
  • 资助金额:
    $ 14.98万
  • 项目类别:
    Standard Grant
CAREER: Developing a Fire Ecology Framework for Soil Bacteria
职业:开发土壤细菌火灾生态框架
  • 批准号:
    2045864
  • 财政年份:
    2021
  • 资助金额:
    $ 14.98万
  • 项目类别:
    Continuing Grant

相似海外基金

NEM-EMERGE: An integrated set of novel approaches to counter the emergence and proliferation of invasive and virulent soil-borne nematodes
NEM-EMERGE:一套综合的新方法来对抗入侵性和剧毒土传线虫的出现和扩散
  • 批准号:
    10080598
  • 财政年份:
    2024
  • 资助金额:
    $ 14.98万
  • 项目类别:
    EU-Funded
Root effects on soil organic matter: a double-edged sword
根系对土壤有机质的影响:一把双刃剑
  • 批准号:
    DP240101159
  • 财政年份:
    2024
  • 资助金额:
    $ 14.98万
  • 项目类别:
    Discovery Projects
NSF PRFB FY23: Effects of bioengineering on community assembly and ecosystem functioning in a soil microbial community
NSF PRFB FY23:生物工程对土壤微生物群落的群落组装和生态系统功能的影响
  • 批准号:
    2305961
  • 财政年份:
    2024
  • 资助金额:
    $ 14.98万
  • 项目类别:
    Fellowship Award
Collaborative Research: MRA: A functional model of soil organic matter composition at continental scale
合作研究:MRA:大陆尺度土壤有机质组成的功能模型
  • 批准号:
    2307253
  • 财政年份:
    2024
  • 资助金额:
    $ 14.98万
  • 项目类别:
    Standard Grant
Collaborative Research: MRA: A functional model of soil organic matter composition at continental scale
合作研究:MRA:大陆尺度土壤有机质组成的功能模型
  • 批准号:
    2307251
  • 财政年份:
    2024
  • 资助金额:
    $ 14.98万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: EAR-PF: Linking soil nitrogen enrichment to mineral weathering and associated organic matter persistence
博士后奖学金:EAR-PF:将土壤氮富集与矿物风化和相关有机物持久性联系起来
  • 批准号:
    2305518
  • 财政年份:
    2024
  • 资助金额:
    $ 14.98万
  • 项目类别:
    Fellowship Award
Collaborative Research: MRA: A functional model of soil organic matter composition at continental scale
合作研究:MRA:大陆尺度土壤有机质组成的功能模型
  • 批准号:
    2307252
  • 财政年份:
    2024
  • 资助金额:
    $ 14.98万
  • 项目类别:
    Standard Grant
RAPID: Responses of Soil Organic Carbon Chemistry to Wildfires across a Rainfall Gradient
RAPID:土壤有机碳化学对降雨梯度范围内野火的响应
  • 批准号:
    2409879
  • 财政年份:
    2024
  • 资助金额:
    $ 14.98万
  • 项目类别:
    Standard Grant
Predicting effects of interannual variability in climate and drought on plant community outcomes, resilience, and soil carbon using temporally replicated grassland reconstructions
使用临时复制的草地重建来预测气候和干旱的年际变化对植物群落结果、恢复力和土壤碳的影响
  • 批准号:
    2343738
  • 财政年份:
    2024
  • 资助金额:
    $ 14.98万
  • 项目类别:
    Continuing Grant
CLIMA/Collaborative Research: Enhancing Soil-Based Infrastructure Resilience to Climate Change: Harnessing the Potential of Fractured Soil by Adding Biopolymers
CLIMA/合作研究:增强土壤基础设施对气候变化的抵御能力:通过添加生物聚合物来利用破碎土壤的潜力
  • 批准号:
    2332082
  • 财政年份:
    2024
  • 资助金额:
    $ 14.98万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了