Magnetic Resonance Imaging and Modeling of Gas and Particle Flow in Fluidized Beds
流化床中气体和颗粒流的磁共振成像和建模
基本信息
- 批准号:2024346
- 负责人:
- 金额:$ 36.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-11-15 至 2023-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Collections of granular (i.e. sand-like) particles normally behave like a solid; however, flowing air up through these particles can make them behave like a bubbling liquid, as observed in industrial process units called “fluidized beds”. Fluidized beds are used in the energy, pharmaceuticals and food industries and in emerging industries for carbon capture and sequestration. Magnetic resonance imaging (MRI) is used to see structure and motion within the human body non-invasively, but it can also be used to image dynamics inside other 3D opaque systems. This project will use MRI to study the motion of both the gas and the sand-like particles surrounding bubbles in fluidized beds and will use this knowledge to improve scientific understanding of the systems. In turn, this understanding can be tailored to enable environmental technologies. Beyond creating scientific and technological insights, this project will benefit the education of students from the high school to the PhD level. High school students from neighboring Harlem and Bronx communities will conduct laboratory research under the supervision of graduate students to provide hands-on experience in uncovering the amazing physics of liquid-like flow of particles and its widespread applications. The high school students will create videos of the bubbly flows to improve their understanding of the science while educating classmates and the general public on the fascinating nature of bubbly flows.Fluidization is the process of suspending granular particles by upward gas flow, transitioning from a solid-like state to a fluid-like state. Voids or “bubbles” of gas rise through fluidized particles, inducing positive effects such as particle mixing as well as negative effects such as diminished gas-solid contact. Thus, understanding the detailed flow physics of gas and particles around bubbles is critical to optimizing a number of technologies as well as developing new tailorable processes. These bubbles are much different from those in conventional liquids, since there is no surface tension separating the bubble and particulate phases and gas passes freely between the bubbles and the surrounding interstices between particles. The inability to “see” the dynamics within 3D opaque systems has left the scientific knowledge of flow around these bubbles largely theoretical, with significant assumptions made in analytical and computational models. Without robust measurements of gas and particle dynamics surrounding bubbles, the accuracy of various assumptions has gone largely unassessed. Recently, the research team for this project has demonstrated that MRI can be used to measure gas and particle dynamics in bubbling fluidized beds. Despite the low temporal resolution of MRI, the team has shown that by synchronizing MRI measurements and reproducibly injected bubbles, effectively instantaneous dynamics around a single bubble can be imaged in 3D. Here, the PI intends to image the gas and particle dynamics surrounding bubbles while varying critical flow conditions to generate insights on how these conditions affect dynamics. The quantitative measurements will be used to assess the validity and areas for improvement in analytical and computational models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
粒状(即沙状)颗粒的集合通常表现得像固体;然而,空气向上流过这些颗粒会使它们表现得像冒泡的液体,正如在称为“流化床”的工业过程单元中观察到的那样。流化床用于能源、制药和食品行业以及新兴行业的碳捕获和封存。磁共振成像 (MRI) 用于无创地观察人体内部的结构和运动,但它也可用于对其他 3D 不透明系统内部的动态进行成像。该项目将使用 MRI 研究流化床中气泡周围气体和沙状颗粒的运动,并将利用这些知识来提高对系统的科学理解。反过来,这种理解可以被定制以实现环境技术。除了创造科学和技术见解之外,该项目还将有益于从高中到博士水平的学生教育。来自邻近哈莱姆区和布朗克斯区的高中生将在研究生的监督下进行实验室研究,以提供实践经验,揭示类液体粒子流的惊人物理现象及其广泛应用。高中生将制作气泡流的视频,以提高他们对科学的理解,同时教育同学和公众了解气泡流的迷人本质。流态化是通过向上的气流使颗粒颗粒悬浮,从类固体状态转变为类流体状态的过程。气体的空隙或“气泡”通过流化颗粒上升,引起颗粒混合等积极影响,以及气固接触减少等消极影响。因此,了解气泡周围气体和颗粒的详细流动物理学对于优化多种技术以及开发新的可定制工艺至关重要。这些气泡与传统液体中的气泡有很大不同,因为不存在将气泡和颗粒相分开的表面张力,并且气体在气泡和颗粒之间的周围间隙之间自由通过。由于无法“看到”3D 不透明系统内的动力学,使得有关这些气泡周围流动的科学知识在很大程度上停留在理论上,并在分析和计算模型中做出了重要假设。如果没有对气泡周围的气体和粒子动力学进行可靠的测量,各种假设的准确性基本上就得不到评估。最近,该项目的研究团队证明,MRI 可用于测量鼓泡流化床中的气体和颗粒动力学。尽管 MRI 的时间分辨率较低,但该团队已经证明,通过同步 MRI 测量和可重复注入的气泡,可以对单个气泡周围的有效瞬时动态进行 3D 成像。在这里,PI 打算对气泡周围的气体和粒子动力学进行成像,同时改变临界流动条件,以深入了解这些条件如何影响动力学。定量测量将用于评估分析和计算模型的有效性和需要改进的领域。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Computer Simulation of Magnetic Resonance Imaging of the Flow of Fluidized Particles
- DOI:10.1021/acs.iecr.3c01021
- 发表时间:2023-07-12
- 期刊:
- 影响因子:4.2
- 作者:Bordbar,Alireza;Benders,Stefan;Boyce,Christopher M.
- 通讯作者:Boyce,Christopher M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Boyce其他文献
Christopher Boyce的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Boyce', 18)}}的其他基金
CAREER: Magnetic Resonance Imaging of Periodically Structured Bubbling Phenomena in Dense Suspensions and Fluidized Granular Materials
职业:密集悬浮液和流化颗粒材料中周期性结构鼓泡现象的磁共振成像
- 批准号:
2144763 - 财政年份:2022
- 资助金额:
$ 36.9万 - 项目类别:
Continuing Grant
REU Site: ChemE-NYC: Climate and Health Solutions
REU 网站:ChemE-NYC:气候与健康解决方案
- 批准号:
2150296 - 财政年份:2022
- 资助金额:
$ 36.9万 - 项目类别:
Standard Grant
Personality, Well-being, and Social Comparisons
个性、幸福感和社会比较
- 批准号:
ES/I001840/1 - 财政年份:2011
- 资助金额:
$ 36.9万 - 项目类别:
Fellowship
相似海外基金
Deciphering the Competing Mechanisms of Li Microstructure Formation in Solid Electrolytes with Nuclear Magnetic Resonance Spectroscopy (NMR) and Imaging (MRI)
利用核磁共振波谱 (NMR) 和成像 (MRI) 解读固体电解质中锂微结构形成的竞争机制
- 批准号:
2319151 - 财政年份:2024
- 资助金额:
$ 36.9万 - 项目类别:
Continuing Grant
CAREER: Safe Continuum Robot Inside Magnetic Resonance Imaging (MRI)
职业:磁共振成像 (MRI) 内的安全连续体机器人
- 批准号:
2339202 - 财政年份:2024
- 资助金额:
$ 36.9万 - 项目类别:
Standard Grant
Magnetic resonance imaging studies of catalytic monoliths
催化整体的磁共振成像研究
- 批准号:
2905857 - 财政年份:2024
- 资助金额:
$ 36.9万 - 项目类别:
Studentship
Magnetic Resonance Imaging (MRI) and Artificial Intelligence (AI) can improve preoperative malignancy risk prediction of ovarian masses.
磁共振成像(MRI)和人工智能(AI)可以改善卵巢肿块的术前恶性肿瘤风险预测。
- 批准号:
486885 - 财政年份:2023
- 资助金额:
$ 36.9万 - 项目类别:
Operating Grants
Establishment of human abdominal aortic aneurysm wall strength prediction model using Ex Vivo Superparamagnetic Iron Oxide–Enhanced Magnetic Resonance Imaging
利用Ex Vivo超顺磁性氧化铁建立人体腹主动脉瘤壁强度预测模型
- 批准号:
23K08226 - 财政年份:2023
- 资助金额:
$ 36.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comparison of direct and indirect magnetic resonance imaging of myelin in Alzheimer's disease
阿尔茨海默病髓磷脂直接和间接磁共振成像的比较
- 批准号:
10680319 - 财政年份:2023
- 资助金额:
$ 36.9万 - 项目类别:
Perfluoroalkyl substances and non-alcoholic fatty liver disease in children: Leveraging magnetic resonance imaging to unravel potential mechanisms and exposure mixture effects
全氟烷基物质与儿童非酒精性脂肪肝:利用磁共振成像揭示潜在机制和暴露混合物效应
- 批准号:
10646759 - 财政年份:2023
- 资助金额:
$ 36.9万 - 项目类别:
SBIR Phase I: Novel development of a pediatric Magnetic Resonance Imaging (MRI) scanner
SBIR 第一阶段:儿科磁共振成像 (MRI) 扫描仪的新开发
- 批准号:
2323231 - 财政年份:2023
- 资助金额:
$ 36.9万 - 项目类别:
Standard Grant
Innovation of cancer chemoradiotherapy based on hyperpolarized-nuclear magnetic resonance metabolic imaging
基于超极化核磁共振代谢成像的癌症放化疗创新
- 批准号:
23H02870 - 财政年份:2023
- 资助金额:
$ 36.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Functional Magnetic Resonance Imaging and Deep Learning to Improve Deep Brain Stimulation Therapy
功能磁共振成像和深度学习改善脑深部刺激疗法
- 批准号:
10717563 - 财政年份:2023
- 资助金额:
$ 36.9万 - 项目类别:














{{item.name}}会员




