I-Corps: Scalable Knowledge Management for Risk Analysis in Finance
I-Corps:用于金融风险分析的可扩展知识管理
基本信息
- 批准号:1620023
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-01-15 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed project aims to explore the commercialization potential of an innovative software, which was developed through NSF-funded research, for risk analysis in finance. A financial institution, such as a bank makes investments in different (possibly risky) financial markets, which can either yield a huge profit or lead to a major loss. Thus, effective financial risk analysis underpins the stability of a financial institution. The credit crisis of 2008 exposed the huge risk undertaken by banks in the mortgage-backed securities market with the assumption that the housing prices will not drop. Subsequently, the Dodd-Frank Wall Street Reform and Consumer Protection Act was signed into federal law in 2010. Since then, there has been a pressing need in the financial industry for a solution to seamlessly integrate data repositories of financial instruments such as deposits, loans, securities, and derivatives. Through such a seamless integration, a financial institution will be able to conduct a more rigorous analysis of the financial risks than ever before. Towards this end, the Enterprise Data Management (EDM) Council in collaboration with financial industry partners is developing a new standard for knowledge representation and data integration. This standard is being designed to enable easy integration of multiple data repositories of financial instruments. This project's software, which is designed for scalable knowledge management, can operate on very large knowledge repositories and provide answers to end-users very quickly. As a result, it can potentially enable rapid risk analysis in a fast-paced, volatile financial market. Therefore, its commercial viability can be potentially transformative in the niche market of financial knowledge management and risk analysis. The anticipated customers of the proposed software are financial risk analysts hired by financial institutions (e.g., banks, trading companies) to assess credit, market, operational, and regulatory risks.The technical goal of the project is to investigate how this project's software, called RIQ, can advance the state-of-the-art in financial knowledge management and risk analysis. RIQ's capability will be extended and its commercialization potential will be explored through the I-Corps Teams program. RIQ has the potential to enable rapid risk analysis through its fast query processing capability. This in turn can enable the customers/end-users to make fast and effective decisions in a dynamic financial market. Through this project, RIQ will be extended to showcase the processing of risk analysis use cases on financial datasets for the final demonstration. RIQ will be offered to potential customers via the Software-as-a-Service model, which is attractive for financial institutions as there is no upfront investment. The I-Corps team will connect with potential customers and stakeholders such as risk analysts, application developers, IT managers, and C-level executives in financial institutions. This project has the potential to advance our understanding of how deep analysis via semantic data representation and integration can unravel risks in the financial markets, which would not have been discovered through conventional risk management software. If RIQ is commercially viable, this project will lead to the creation of a tech startup, which will lead to new jobs and foster economic development in Missouri. RIQ will be provided at no cost to academic users to enhance the infrastructure for education and training, especially for those interested in knowledge management and data analytics in finance.
拟议的项目旨在探索创新软件的商业化潜力,该软件是通过国家科学基金资助的研究开发的,用于金融风险分析。金融机构,如银行,在不同的(可能有风险的)金融市场进行投资,这可能会产生巨大的利润或导致重大损失。因此,有效的金融风险分析是金融机构稳定的基础。2008年的信贷危机暴露了银行在假设房价不会下跌的情况下在抵押贷款支持证券市场上承担的巨大风险。随后,《多德-弗兰克华尔街改革和消费者保护法》于2010年签署成为联邦法律。从那时起,金融行业就迫切需要一种解决方案来无缝集成存款、贷款、证券和衍生品等金融工具的数据存储库。通过这种无缝集成,金融机构将能够对金融风险进行比以往任何时候都更严格的分析。为此,企业数据管理(EDM)理事会与金融业合作伙伴合作,正在开发一个新的知识表示和数据集成标准。该标准旨在实现金融工具的多个数据存储库的轻松集成。该项目的软件是为可扩展的知识管理而设计的,可以在非常大的知识库上运行,并非常迅速地向最终用户提供答案。因此,它可以在快节奏,波动的金融市场中进行快速风险分析。因此,它的商业可行性在金融知识管理和风险分析的利基市场上可能具有变革性。所提出的软件的预期客户是金融机构雇用的金融风险分析师(例如,银行、贸易公司)来评估信贷、市场、运营和监管风险。该项目的技术目标是调查该项目的软件(称为RIQ)如何推进金融知识管理和风险分析的最新水平。RIQ的能力将得到扩展,其商业化潜力将通过I-Corps Teams计划进行探索。RIQ具有通过其快速查询处理能力实现快速风险分析的潜力。这反过来又可以使客户/最终用户在动态的金融市场中做出快速有效的决策。通过该项目,RIQ将扩展到展示金融数据集上的风险分析用例的处理,以进行最终演示。RIQ将通过软件即服务模式提供给潜在客户,这对金融机构来说很有吸引力,因为没有前期投资。I-Corps团队将与潜在客户和利益相关者建立联系,如风险分析师、应用程序开发人员、IT经理和金融机构的C级高管。该项目有可能促进我们对通过语义数据表示和集成进行深入分析如何揭示金融市场风险的理解,而这些风险是通过传统的风险管理软件无法发现的。如果RIQ在商业上是可行的,这个项目将导致创建一个技术创业公司,这将导致新的就业机会和促进密苏里州的经济发展。RIQ将免费提供给学术用户,以加强教育和培训的基础设施,特别是对金融知识管理和数据分析感兴趣的用户。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Praveen Rao其他文献
Carvajal Syndrome - A Variant Of Arrhythmogenic Right Ventricular Cardiomyopathy
卡瓦哈尔综合征 - 致心律失常右室心肌病的一种变体
- DOI:
10.1016/j.cardfail.2022.03.314 - 发表时间:
2022-04-01 - 期刊:
- 影响因子:8.200
- 作者:
Justin Arunthamakun;Praveen Rao;Amit Alam - 通讯作者:
Amit Alam
Claims data analysis of provider-to-provider tele-mentoring program impact on opioid prescribing in Missouri.
密苏里州提供者对提供者远程指导计划对阿片类药物处方影响的索赔数据分析。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Olabode Ogundele;Xing Song;Praveen Rao;Tracy Greever;Suzanne A Boren;Karen Edison;Douglas Burgess;Mirna Becevic - 通讯作者:
Mirna Becevic
The Case for Designing Data-Intensive Cloud-Based Healthcare Applications
设计数据密集型基于云的医疗保健应用程序的案例
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
S. Bhagavan;K. Alsultan;Praveen Rao - 通讯作者:
Praveen Rao
When The “Genes” No Longer Fit: An Unusual Presentation of LMNA-related Cardiomyopathy
- DOI:
10.1016/j.cardfail.2020.09.307 - 发表时间:
2020-10-01 - 期刊:
- 影响因子:
- 作者:
Justin Arunthamakun;Timothy Gong;Joshua Rutland;Matthew Wainwright;Dan Meyer;William C. Roberts;Praveen Rao;Amit Alam;Shelley Hall - 通讯作者:
Shelley Hall
020 - Ventricular Arrhythmias before LVAD Do Not Increase Risk of Mortality or Rehospitalization
- DOI:
10.1016/j.cardfail.2016.06.037 - 发表时间:
2016-08-01 - 期刊:
- 影响因子:
- 作者:
Praveen Rao;David Raymer;Christopher Sparrow;Michael Nassif;Eric Novak;Daniel Cooper;Shane LaRue;Gregory Ewald;Justin Vader - 通讯作者:
Justin Vader
Praveen Rao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Praveen Rao', 18)}}的其他基金
CC* Integration-Small: Harnessing FABRIC for Scalable Human Genome Sequence Analysis
CC* Integration-Small:利用 FABRIC 进行可扩展的人类基因组序列分析
- 批准号:
2201583 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
RAPID: Democratizing Genome Sequence Analysis for COVID-19 Using CloudLab
RAPID:使用 CloudLab 实现 COVID-19 基因组序列分析的大众化
- 批准号:
2034247 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Scalable Storage of Whole Slide Images and Fast Retrieval of Tiles for Next-Generation Image Analytics
I-Corps:整个幻灯片图像的可扩展存储和用于下一代图像分析的图块的快速检索
- 批准号:
2024429 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Scalable Storage of Whole Slide Images and Fast Retrieval of Tiles for Next-Generation Image Analytics
I-Corps:整个幻灯片图像的可扩展存储和用于下一代图像分析的图块的快速检索
- 批准号:
1841752 - 财政年份:2018
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
III: Small: Scalable RDF Query Processing Using a Cloud Infrastructure
III:小型:使用云基础设施进行可扩展的 RDF 查询处理
- 批准号:
1115871 - 财政年份:2011
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
PFI-TT: A Hybrid Scalable Data Management System Providing Deep Access to the Scientific Knowledge in Data Science
PFI-TT:混合可扩展数据管理系统,提供对数据科学中科学知识的深入访问
- 批准号:
2345794 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
CAREER: Towards Efficient and Scalable Zero-Knowledge Proofs
职业:迈向高效且可扩展的零知识证明
- 批准号:
2401481 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Closing Critical Knowledge Gaps in Rates of CO2 Mineralization in Soils, Rocks, and Aquifers as a Scalable Climate Change Mitigation Solution
作为可扩展的气候变化减缓解决方案,缩小土壤、岩石和含水层中二氧化碳矿化率的关键知识差距
- 批准号:
2242907 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CAREER: Towards Efficient and Scalable Zero-Knowledge Proofs
职业:迈向高效且可扩展的零知识证明
- 批准号:
2144625 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Scalable Knowledge Representation and Solving
可扩展的知识表示和解决
- 批准号:
RGPIN-2017-06018 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Discovery Grants Program - Individual
Scalable Knowledge Representation and Solving
可扩展的知识表示和解决
- 批准号:
RGPIN-2017-06018 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Discovery Grants Program - Individual
Scalable Knowledge Representation and Solving
可扩展的知识表示和解决
- 批准号:
RGPIN-2017-06018 - 财政年份:2019
- 资助金额:
$ 5万 - 项目类别:
Discovery Grants Program - Individual
Convergence Accelerator Phase I (RAISE): Scalable Knowledge Network to Enable Intelligent Textbooks
融合加速器第一阶段(RAISE):可扩展的知识网络以实现智能教科书
- 批准号:
1937134 - 财政年份:2019
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Scalable Knowledge Representation and Solving
可扩展的知识表示和解决
- 批准号:
RGPIN-2017-06018 - 财政年份:2018
- 资助金额:
$ 5万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: From knowledge consumers to knowledge producers: A scalable experiential learning approach for psychology and related disciplines
协作研究:从知识消费者到知识生产者:心理学及相关学科的可扩展体验式学习方法
- 批准号:
1837731 - 财政年份:2018
- 资助金额:
$ 5万 - 项目类别:
Standard Grant














{{item.name}}会员




