NRI: FND: Foundations for Physical Co-Manipulation with Mixed Teams of Humans and Soft Robots
NRI:FND:人类和软机器人混合团队物理协同操作的基础
基本信息
- 批准号:2024670
- 负责人:
- 金额:$ 3.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this National Robotics Initiative (NRI) project is to enable mixed teams of humans and robots to work together to accomplish physically demanding object manipulation tasks in complex environments. For this project, soft robots are exclusively considered, because traditional robots are too heavy and potentially dangerous to work closely with people. Humans can effectively work together to move a bulky, heavy object because they are able to use their understanding of group goals and individual capabilities to interpret physical cues and quickly infer each other's intention. Thus, the first step in extending this ability to robots is to understand how groups of people recognize and react to pushing and pulling from other team members. The project also emphasizes the necessity of managing uncertainty when working with soft robots and with people -- soft robots because they deform significantly under typical task loads, and people because their movements may be difficult for robots to predict. Potential applications of the research can range from expediting logistics and material handling, to improving human safety in dangerous and/or hard-to-reach environments such as mining, oil rigs, logging, and search and rescue. To this end, a collaboration with a local search and rescue team will solicit feedback on human-robot co-manipulation throughout the project. Underrepresented undergraduate students will be trained with a STEM education tool leveraging soft robotics, and the students will then work to disseminate this training to local K-12 classrooms. Co-manipulation can be defined as the actions taken and the signals sent by many collaborating agents while moving a single large object. This research will enable co-manipulation between humans and robots, and is focused on the following three main thrusts: 1) modeling, controlling, and planning effective stiffness trajectories for soft robots to deal with task uncertainty, 2) quantifying and modeling human intention and consensus during manipulation, and 3) developing algorithms that incorporate intention, consensus, and uncertainty to execute co-manipulation tasks. Building on prior work on model predictive control algorithms for large-degree-of-freedom soft robots, stiffness trajectories will be generated as part of the soft robot control based on estimates of task uncertainty. Trials with human collaborators moving large objects in real life and in virtual reality will allow the development of algorithms that predict consensus and motion of the group. Finally, given a reasonable estimate of the short-term motion goal of a group, the resulting algorithms will also generate robot motion and stiffness trajectories to help a group reach consensus more efficiently by reducing uncertainty. This research will pioneer the novel combination of natural physical interaction, control for safe robots, multi-agent coordination, and planning/acting in a distributed manner.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个国家机器人倡议(NRI)项目的目标是使人类和机器人的混合团队能够在复杂的环境中共同完成对身体要求很高的物体操纵任务。在这个项目中,软体机器人是专门考虑的,因为传统的机器人太重了,而且有潜在的危险,不能与人密切合作。人类可以有效地合作来移动一个笨重的物体,因为他们能够利用他们对群体目标的理解和个人能力来解释物理线索,并快速推断对方的意图。因此,将这种能力扩展到机器人的第一步是了解团队成员对来自其他团队成员的推拉是如何识别和反应的。该项目还强调了在与软机器人和人合作时管理不确定性的必要性--软机器人是因为它们在典型的任务负荷下会显著变形,人是因为它们的动作可能难以被机器人预测。这项研究的潜在应用范围从加快物流和材料处理,到在危险和/或难以到达的环境中改善人类安全,如采矿、石油钻井、伐木和搜救。为此,与当地搜救队的合作将在整个项目中征求关于人-机器人合作的反馈。未被充分代表的本科生将接受利用软机器人的STEM教育工具的培训,然后学生将努力将这种培训传播到当地的K-12课堂。协同操纵可以被定义为多个协作主体在移动单个大对象时所采取的动作和发出的信号。这项研究将实现人与机器人之间的协同操作,主要集中在以下三个方面:1)为处理任务不确定性的软机器人建模、控制和规划有效的刚性轨迹;2)对操作过程中人类的意图和共识进行量化和建模;3)开发包含意图、共识和不确定性的算法来执行协同操作任务。在前人对大自由度软机器人模型预测控制算法研究的基础上,基于对任务不确定性的估计,将产生刚度轨迹作为软机器人控制的一部分。在现实生活和虚拟现实中,人类合作者移动大型物体的试验将允许开发预测群体共识和运动的算法。最后,给出一个群体的短期运动目标的合理估计,由此产生的算法还将生成机器人的运动和刚度轨迹,通过减少不确定性来帮助一个群体更有效地达成共识。这项研究将开创自然物理互动、安全机器人控制、多智能体协调以及分布式计划/行动的新组合。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rebecca Kramer-Bottiglio其他文献
Robots that evolve on demand
按需进化的机器人
- DOI:
10.1038/s41578-024-00711-z - 发表时间:
2024-09-12 - 期刊:
- 影响因子:86.200
- 作者:
Robert Baines;Frank Fish;Josh Bongard;Rebecca Kramer-Bottiglio - 通讯作者:
Rebecca Kramer-Bottiglio
Rebecca Kramer-Bottiglio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rebecca Kramer-Bottiglio', 18)}}的其他基金
DMREF/Collaborative Research: Design and Optimization of Granular Metamaterials using Artificial Evolution
DMREF/协作研究:利用人工进化设计和优化颗粒超材料
- 批准号:
2118988 - 财政年份:2021
- 资助金额:
$ 3.19万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Fabric-Embedded Dynamic Sensing for Adaptive Exoskeleton Assistance
CHS:媒介:协作研究:用于自适应外骨骼辅助的织物嵌入式动态传感
- 批准号:
1954591 - 财政年份:2020
- 资助金额:
$ 3.19万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Robust Assembly of Compliant Modular Robots
合作研究:RI:中:兼容模块化机器人的稳健组装
- 批准号:
1955225 - 财政年份:2020
- 资助金额:
$ 3.19万 - 项目类别:
Standard Grant
EFRI C3 SoRo: Programmable Skins for Moldable and Morphogenetic Soft Robots
EFRI C3 SoRo:用于可塑和形态生成软机器人的可编程皮肤
- 批准号:
1830870 - 财政年份:2018
- 资助金额:
$ 3.19万 - 项目类别:
Standard Grant
CAREER: Understanding the Printability of Liquid Metal Dispersions for Additive Manufacturing
职业:了解增材制造液态金属分散体的可印刷性
- 批准号:
1812948 - 财政年份:2017
- 资助金额:
$ 3.19万 - 项目类别:
Standard Grant
CAREER: Understanding the Printability of Liquid Metal Dispersions for Additive Manufacturing
职业:了解增材制造液态金属分散体的可印刷性
- 批准号:
1454284 - 财政年份:2015
- 资助金额:
$ 3.19万 - 项目类别:
Standard Grant
相似国自然基金
Novosphingobium sp. FND-3降解呋喃丹的分子机制研究
- 批准号:31670112
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Movement perception in Functional Neurological Disorder (FND)
功能性神经疾病 (FND) 的运动感知
- 批准号:
MR/Y004000/1 - 财政年份:2024
- 资助金额:
$ 3.19万 - 项目类别:
Research Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
- 批准号:
2348839 - 财政年份:2023
- 资助金额:
$ 3.19万 - 项目类别:
Standard Grant
S&AS: FND: COLLAB: Planning and Control of Heterogeneous Robot Teams for Ocean Monitoring
S
- 批准号:
2311967 - 财政年份:2022
- 资助金额:
$ 3.19万 - 项目类别:
Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
- 批准号:
2024882 - 财政年份:2021
- 资助金额:
$ 3.19万 - 项目类别:
Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
- 批准号:
2024646 - 财政年份:2021
- 资助金额:
$ 3.19万 - 项目类别:
Standard Grant
NRI: FND: Foundations for Physical Co-Manipulation with Mixed Teams of Humans and Soft Robots
NRI:FND:人类和软机器人混合团队物理协同操作的基础
- 批准号:
2024792 - 财政年份:2021
- 资助金额:
$ 3.19万 - 项目类别:
Standard Grant
NRI: FND: Natural Power Transmission through Unconstrained Fluids for Robotic Manipulation
NRI:FND:通过不受约束的流体进行自然动力传输,用于机器人操作
- 批准号:
2024409 - 财政年份:2020
- 资助金额:
$ 3.19万 - 项目类别:
Standard Grant
NRI: FND: Multi-Manipulator Extensible Robotic Platforms
NRI:FND:多机械手可扩展机器人平台
- 批准号:
2024435 - 财政年份:2020
- 资助金额:
$ 3.19万 - 项目类别:
Standard Grant
Collaborative Research: NRI: FND: Flying Swarm for Safe Human Interaction in Unstructured Environments
合作研究:NRI:FND:用于非结构化环境中安全人类互动的飞群
- 批准号:
2024615 - 财政年份:2020
- 资助金额:
$ 3.19万 - 项目类别:
Standard Grant
Collaborative Research: NRI: FND: Grounded Reasoning about Robot Capabilities for Law and Policy
合作研究:NRI:FND:关于机器人法律和政策能力的基础推理
- 批准号:
2024643 - 财政年份:2020
- 资助金额:
$ 3.19万 - 项目类别:
Standard Grant