Liquid Phase Metamaterials
液相超材料
基本信息
- 批准号:243120259
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2014
- 资助国家:德国
- 起止时间:2013-12-31 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nanostructured materials allow for a control of the properties of light in a comprehensive way and entail the opportunity to devise completely new applications. Up to now, however, such materials are usually realized with established top-down nano-structuring methods. This allows for a rather comprehensive control over the geometry and the symmetries of the structure, but it also causes disadvantages. Most detrimental is the difficulty to provide truly bulk materials and to assure control over the exact nanoscopic details of the structure. In addition, the usually chosen periodic arrangement of identical unit cells is a drawback since it induces spatial dispersion. To solve these problems, bottom-up methods for the liquid phase chemical synthesis of nanostructured materials have been recently developed. This mitigates the aforementioned problems, but usually comes with the drawback that the geometry of the unit cells cannot be defined precisely, leading to an insufficient dispersion of the optical properties.In our project we want to solve this fundamental problem by combining top-down and bottom-up approaches, to obtain highly dispersive, isotropic photonic nanomaterials in solution. They will have properties not available with natural materials. We will achieve our challenging project goals by relying on top-down methods to create the unit cells of the eventual materials on large surfaces. They are afterwards removed from the surface and transferred into a liquid form. In this liquid phase, the identical elementary cells are amorphously arranged resulting in isotropic highly dispersive materials properties. These properties can be perfectly controlled by the identical and deterministic geometry of the highly resonant unit cells. In a further step, these liquid materials can also be transformed into an amorphous solid phase where they may entail further applications. Our ambitious project comprises the theoretical analysis and simulation of these amorphous materials which consist of highly complicated unit cells as well as their elaborate fabrication and experimental characterization in the near and far field. Altogether, this represents an enormous challenge for nowadays nanoscience which we will solve as a team.Based on this entirely new class of material, we will realize different applications. They will not just demonstrate the emerging material properties, but should be of direct benefit as well. Examples are printable optical components and immersion liquids with a high refractive index to significantly increase the resolution of optical microscopes. Furthermore, we envision fluids with zero electrical permittivity as a prerequisite for future applications. In addition to these immediate applications, the artificial liquids can also lead to completely new light controlled opto-fluidic applications. In our project, we want to develop the scientific bases needed to achieve these visionary goals in the future.
纳米结构材料允许以全面的方式控制光的特性,并带来了设计全新应用的机会。然而,到目前为止,这种材料通常是通过建立自上而下的纳米结构化方法来实现的。这允许对结构的几何形状和对称性进行相当全面的控制,但也会导致缺点。最不利的是难以提供真正的块体材料和确保对结构的精确纳米级细节的控制。此外,通常选择的相同单位单元的周期性布置是一个缺点,因为它引起空间色散。为了解决这些问题,最近开发了用于液相化学合成纳米结构材料的自下而上方法。这缓解了上述问题,但通常伴随着的缺点是,不能精确定义的几何结构的晶胞,导致光学性能的色散不足。在我们的项目中,我们希望解决这个基本问题,结合自上而下和自下而上的方法,以获得高色散,各向同性的光子纳米材料的解决方案。它们将具有天然材料所不具备的特性。我们将依靠自上而下的方法在大表面上创建最终材料的单位单元来实现我们具有挑战性的项目目标。然后将它们从表面移除并转化为液体形式。在该液相中,相同的基本单元无定形地排列,导致各向同性的高度分散的材料性质。这些特性可以通过高度谐振的单元格的相同和确定性的几何形状来完美地控制。在进一步的步骤中,这些液体材料也可以转化为无定形固相,其中它们可能需要进一步的应用。我们雄心勃勃的项目包括这些非晶材料的理论分析和模拟,这些材料由高度复杂的晶胞组成,以及它们在近场和远场的精细制造和实验表征。总而言之,这代表了当今纳米科学的一个巨大挑战,我们将作为一个团队来解决。基于这种全新的材料,我们将实现不同的应用。它们不仅将展示新兴的材料特性,而且还应该直接受益。例如可印刷的光学元件和具有高折射率的浸没液体,以显着提高光学显微镜的分辨率。此外,我们设想流体的零介电常数作为未来应用的先决条件。除了这些直接的应用之外,人造液体还可以导致全新的光控光流体应用。在我们的项目中,我们希望开发未来实现这些有远见的目标所需的科学基础。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Revisiting substrate-induced bianisotropy in metasurfaces
- DOI:10.1103/physrevb.91.195304
- 发表时间:2015-05-07
- 期刊:
- 影响因子:3.7
- 作者:Albooyeh, M.;Alaee, R.;Simovski, C.
- 通讯作者:Simovski, C.
Objects of Maximum Electromagnetic Chirality
- DOI:10.1103/physrevx.6.031013
- 发表时间:2016-07-28
- 期刊:
- 影响因子:12.5
- 作者:Fernandez-Corbaton, Ivan;Fruhnert, Martin;Rockstuhl, Carsten
- 通讯作者:Rockstuhl, Carsten
Controlling the excitation of radially polarized conical plasmons in plasmonic tips in liquids
控制液体中等离激元尖端中径向偏振圆锥形等离激元的激发
- DOI:10.1039/c6ra09341h
- 发表时间:2016
- 期刊:
- 影响因子:3.9
- 作者:B. N. Tugchin;N. Janunts;M. Steinert;K. Dietrich;D. Sivun;S. Ramachandran;K. V. Nerkararyan;A. Tünnermann;T. Pertsch
- 通讯作者:T. Pertsch
Quasi-linearly polarized hybrid modes in tapered and metal-coated tips with circular apertures: understanding the functionality of aperture tips
- DOI:10.1088/1367-2630/aa6feb
- 发表时间:2017-06
- 期刊:
- 影响因子:3.3
- 作者:Bayarjargal N Tugchin;N. Janunts;M. Steinert;Kay Dietrich;E. Kley;A. Tünnermann;T. Pertsch
- 通讯作者:Bayarjargal N Tugchin;N. Janunts;M. Steinert;Kay Dietrich;E. Kley;A. Tünnermann;T. Pertsch
Extreme coupling: A route towards local magnetic metamaterials
- DOI:10.1103/physrevb.89.155125
- 发表时间:2014-04
- 期刊:
- 影响因子:3.7
- 作者:C. Menzel;E. Hebestreit;R. Alaee;M. Albooyeh;S. Mühlig;S. Burger;C. Rockstuhl;C. Simovski;S. Tretyakov;F. Lederer;T. Pertsch
- 通讯作者:C. Menzel;E. Hebestreit;R. Alaee;M. Albooyeh;S. Mühlig;S. Burger;C. Rockstuhl;C. Simovski;S. Tretyakov;F. Lederer;T. Pertsch
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Ernst-Bernhard Kley其他文献
Dr. Ernst-Bernhard Kley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dr. Ernst-Bernhard Kley', 18)}}的其他基金
Investigation on near-plane varied-line-spacing gratings made by electron beam lithography and near field holography
电子束光刻和近场全息近平面变线距光栅研究
- 批准号:
254170536 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Discrete spatio-temporal dynamics in nonlinear microstructured resonators
非线性微结构谐振器中的离散时空动力学
- 批准号:
41079355 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Units
Strukturierungsverfahren für mikro- und nanooptische Elemente in Lithiumniobat.
铌酸锂中微米和纳米光学元件的结构化工艺。
- 批准号:
41652290 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
- 批准号:61675216
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Phase-type分布的多状态系统可靠性模型研究
- 批准号:71501183
- 批准年份:2015
- 资助金额:17.4 万元
- 项目类别:青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
- 批准号:51201142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
- 批准号:11101428
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
- 批准号:19374069
- 批准年份:1993
- 资助金额:6.4 万元
- 项目类别:面上项目
相似海外基金
Chalcogenides phase-change metamaterials for neuromorphic computing applications
用于神经形态计算应用的硫属化物相变超材料
- 批准号:
573393-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
STTR Phase I: Enhancing MRI performance by using nonlinear metamaterials
STTR 第一阶段:使用非线性超材料增强 MRI 性能
- 批准号:
2052053 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
IUCRC Phase III University of North Carolina at Charlotte: Center for Metamaterials (CfM)
IUCRC 第三阶段北卡罗来纳大学夏洛特分校:超材料中心 (CfM)
- 批准号:
2052745 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
SBIR Phase I: Ultra Low-Cost Mechanical Metamaterials to Enable Mobility and Interactivity for Cyber-Physical Devices
SBIR 第一阶段:超低成本机械超材料,实现网络物理设备的移动性和交互性
- 批准号:
1913784 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Leveraging Metamaterials and Phase Control in ThermoAcoustic Systems
在热声系统中利用超材料和相位控制
- 批准号:
1904254 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Phase II I/UCRC U. of North Carolina at Charlotte Site: Center for Metamaterials (CfM)
II 期 I/UCRC 北卡罗来纳大学夏洛特基地:超材料中心 (CfM)
- 批准号:
1624572 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Continuing Grant
Phase II I/UCRC Clarkson University Site: Center for Metamaterials (CfM)
II 期 I/UCRC 克拉克森大学站点:超材料中心 (CfM)
- 批准号:
1624679 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Continuing Grant
SBIR Phase II: Metamaterials for Giant Dielectrics and Energy Storage Solutions
SBIR 第二阶段:用于巨型电介质和储能解决方案的超材料
- 批准号:
1026825 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
SBIR Phase I: Metamaterials for Giant Dielectrics and Energy Storage Solutions
SBIR 第一阶段:用于巨型电介质和储能解决方案的超材料
- 批准号:
0839347 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
SBIR Phase I: Light-channeling Metamaterials for Polarimetric Sensing
SBIR 第一阶段:用于偏振传感的光通道超材料
- 批准号:
0912467 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant