Using machine learning method to detect slow slip events in ocean bottom pressure data
利用机器学习方法检测海底压力数据中的慢滑移事件
基本信息
- 批准号:2025563
- 负责人:
- 金额:$ 40.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project seeks to improve the understanding of earthquakes and tsunamis in subduction zones. Special tectonic signals that can be measured at the seafloor may represent the release of tectonic stress in subduction zones. If so, measurements from pressure sensors on the seafloor could be used to estimate earthquake and tsunami risks. However, noise from ocean processes makes it difficult to detect this signal accurately. This project will take advantage of recent advances in a computational technique, machine learning, to develop a better detector of this signal.. This project will support early career scientists and people from underrepresented groups (Latino and Female) in STEM fields. It will also support a graduate student and several undergraduates. This project will develop teaching modules of machine learning at the graduate, undergraduate, high school, and middle school levels. This project will publish code in the public domain and share the teaching modules within the community immediately after the project finishes. Shallow slow slip events provide a mechanism for strain release at the shallow part of subduction zones, which is important for tsunami hazard assessment. For most subduction zones, the trench is far from the coast and it is unclear whether shallow slow slip events exist. Even in places where these events were detected, key quantities such as the duration and magnitude were not well constrained. As a result, the locking state of shallow subduction zones and the mechanism of shallow slow slip events is still unclear. To answer these questions, this project will take advantage of recent advancement in machine learning and the accumulation of seafloor pressure datasets to improve our ability to detect shallow slow slip events in subduction zones. Preliminary analyses of seafloor pressure data from New Zealand have demonstrated that machine learning can successfully identify known slow slip events and further reduce ocean noise in seafloor pressure data. Using available data from several subduction zones, this project will further improve the machine-learning detector to estimate the duration, amplitude, and timing of shallow slow slip events. This project will also develop an improved way to reduce ocean noise in seafloor pressure data by using machine learning to capture the complex relationship of measurable quantities in the ocean. Collectively, this project will provide better tools to measure shallow slow slip events and assess the locking state of shallow subduction zones.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在提高对俯冲带地震和海啸的了解。可以在海底测量的特殊构造信号可能代表俯冲带构造应力的释放。如果是这样的话,海底压力传感器的测量结果可以用来估计地震和海啸的风险。然而,海洋过程中的噪声使得准确检测这一信号变得困难。这个项目将利用计算技术--机器学习的最新进展,来开发一种更好的这种信号检测器。该项目将支持STEM领域的早期职业科学家和代表人数不足的群体(拉丁裔和女性)的人。它还将支持一名研究生和几名本科生。该项目将开发研究生、本科生、高中和中学水平的机器学习教学模块。该项目将在公共领域发布代码,并在项目完成后立即在社区内共享教学模块。浅层慢滑事件为俯冲带浅层应变释放提供了一种机制,对海啸危险性评估具有重要意义。对于大多数俯冲区来说,海沟远离海岸,是否存在浅层慢滑事件尚不清楚。即使在检测到这些事件的地方,持续时间和震级等关键数量也没有得到很好的约束。因此,浅层俯冲带的锁定状态和浅层慢滑事件的机制尚不清楚。为了回答这些问题,这个项目将利用机器学习的最新进展和海底压力数据集的积累来提高我们探测俯冲带浅层慢滑事件的能力。对新西兰海底压力数据的初步分析表明,机器学习可以成功地识别已知的慢滑事件,并进一步减少海底压力数据中的海洋噪音。利用几个俯冲带的现有数据,该项目将进一步改进机器学习探测器,以估计浅层慢滑事件的持续时间、幅度和时间。该项目还将开发一种改进的方法,通过使用机器学习来捕捉海洋中可测量数量的复杂关系,从而减少海底压力数据中的海洋噪音。总体而言,该项目将提供更好的工具来测量浅层慢滑事件和评估浅层俯冲区的锁定状态。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A shallow slow slip event in 2018 in the Semidi segment of the Alaska subduction zone detected by machine learning
机器学习检测到 2018 年阿拉斯加俯冲带塞米迪段发生的浅层慢滑事件
- DOI:10.1016/j.epsl.2023.118154
- 发表时间:2023
- 期刊:
- 影响因子:5.3
- 作者:He, Bing;Wei, XiaoZhuo;Wei, Meng;Shen, Yang;Alvarez, Marco;Schwartz, Susan Y.
- 通讯作者:Schwartz, Susan Y.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Meng Wei其他文献
Research on prediction model of oscillatory sequence based on GM (1,1) and its application in electricity demand prediction
基于GM(1,1)的振荡序列预测模型研究及其在电力需求预测中的应用
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:1.6
- 作者:
Zeng Bo;Meng Wei;Liu Sifeng;Xie Naiming;Li Chuan;Cui Jie - 通讯作者:
Cui Jie
CuI-Catalyzed C1-Alkynylation of Tetrahydroisoquinolines (THIQs) by A(3) Reaction with Tunable Iminium Ions
CuI 催化的四氢异喹啉 (THIQs) 与可调亚胺离子的 A(3) 反应的 C1-炔基化
- DOI:
10.1021/ol402517e - 发表时间:
2013 - 期刊:
- 影响因子:5.2
- 作者:
Zheng Qin-Heng;Meng Wei;Jiang Guo-Jie;Yu Zhi-Xiang - 通讯作者:
Yu Zhi-Xiang
Circulating tumor DNA in neuroblastoma
神经母细胞瘤中的循环肿瘤 DNA
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:3.2
- 作者:
Meng Wei;M. Ye;K. Dong;Rui Dong - 通讯作者:
Rui Dong
Adaptation and psychometric evaluation of the simplified Chinese version of the identification of functional ankle instability questionnaire in Chinese-speaking patients with chronic ankle instability disorders
简体中文版功能性踝关节不稳识别问卷在汉语慢性踝关节不稳定疾病患者中的适应性及心理测量评估
- DOI:
10.1186/s12891-020-03314-1 - 发表时间:
2019 - 期刊:
- 影响因子:2.3
- 作者:
Wei Wang;Jun Sheng;Yinchao Tang;Qing;Meng Wei;Zhi;Wei Zheng - 通讯作者:
Wei Zheng
Quantifying the importance of interannual, interdecadal and multidecadal climate natural variabilities in the modulation of global warming rates
量化年际、年代际和数十年气候自然变异在调节全球变暖速率中的重要性
- DOI:
10.1007/s00382-019-04955-2 - 发表时间:
2019-12 - 期刊:
- 影响因子:4.6
- 作者:
Meng Wei;Fangli Qiao;Yongqing Guo;Jia Deng;Zhenya Song;Qi Shu;Xiaodan Yang - 通讯作者:
Xiaodan Yang
Meng Wei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Meng Wei', 18)}}的其他基金
CAREER: Integration of rate-and-state friction and viscoelastic flow to model earthquake cycles on an oceanic transform fault
职业:整合速率和状态摩擦和粘弹性流来模拟海洋转换断层上的地震周期
- 批准号:
1654416 - 财政年份:2017
- 资助金额:
$ 40.64万 - 项目类别:
Standard Grant
EAGER: Quantification of Ocean Water Column Contributions to Bottom Pressure offshore Cascadia using Current and Pressure Recording Inverted Echo Sounders
EAGER:使用电流和压力记录倒置回声测深仪量化海水柱对卡斯卡迪亚近海底部压力的贡献
- 批准号:
1728060 - 财政年份:2017
- 资助金额:
$ 40.64万 - 项目类别:
Standard Grant
Earthquake Triggering and Synchronization on Oceanic Transform Faults
海洋转换断层的地震触发与同步
- 批准号:
1357433 - 财政年份:2014
- 资助金额:
$ 40.64万 - 项目类别:
Standard Grant
Static and Dynamic Triggering of Fault Creep on Strike-Slip Faults
走滑断层上断层蠕变的静态和动态触发
- 批准号:
1246966 - 财政年份:2013
- 资助金额:
$ 40.64万 - 项目类别:
Standard Grant
Static and Dynamic Triggering of Fault Creep on Strike-Slip Faults
走滑断层上断层蠕变的静态和动态触发
- 批准号:
1411704 - 财政年份:2013
- 资助金额:
$ 40.64万 - 项目类别:
Standard Grant
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
非标准随机调度模型的最优动态策略
- 批准号:71071056
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
微生物发酵过程的自组织建模与优化控制
- 批准号:60704036
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
I-Corps: Translation potential of using machine learning to predict oxaliplatin chemotherapy benefit in early colon cancer
I-Corps:利用机器学习预测奥沙利铂化疗对早期结肠癌疗效的转化潜力
- 批准号:
2425300 - 财政年份:2024
- 资助金额:
$ 40.64万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: OCE-PRF: Using machine learning to investigate temporal dynamics of methane seep fauna at the Ocean Observatories Initiative (OOI) Regional Cabled Array
博士后奖学金:OCE-PRF:利用机器学习研究海洋观测计划 (OOI) 区域有线阵列中甲烷渗漏动物群的时间动态
- 批准号:
2307504 - 财政年份:2024
- 资助金额:
$ 40.64万 - 项目类别:
Standard Grant
An innovative cyber compliance platform using AI, live monitoring data and machine learning to automate compliance and due diligence completion.
一个创新的网络合规平台,使用人工智能、实时监控数据和机器学习来自动完成合规和尽职调查。
- 批准号:
10100493 - 财政年份:2024
- 资助金额:
$ 40.64万 - 项目类别:
Collaborative R&D
Accelerating pulse breeding using machine learning
利用机器学习加速豆类育种
- 批准号:
LP230100351 - 财政年份:2024
- 资助金额:
$ 40.64万 - 项目类别:
Linkage Projects
Is evolution predictable? Unlocking fundamental biological insights using new machine learning methods
进化是可预测的吗?
- 批准号:
MR/X033880/1 - 财政年份:2024
- 资助金额:
$ 40.64万 - 项目类别:
Fellowship
Enhancing Condition Monitoring and Prognostics of Variable Speed Motor Drives Using Machine Learning and IoT Technologies
使用机器学习和物联网技术增强变速电机驱动器的状态监测和预测
- 批准号:
2910604 - 财政年份:2024
- 资助金额:
$ 40.64万 - 项目类别:
Studentship
Design of Novel Heterostructures for Future Application in Optoelectronics using First Principle Simulations and Machine Learning
使用第一原理模拟和机器学习设计用于未来光电子学应用的新型异质结构
- 批准号:
24K17615 - 财政年份:2024
- 资助金额:
$ 40.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Using Novel Machine Learning Methods to Personalize Strategies for Prevention of Persistent AKI after Cardiac Surgery
使用新颖的机器学习方法制定个性化策略,预防心脏手术后持续性 AKI
- 批准号:
10979324 - 财政年份:2024
- 资助金额:
$ 40.64万 - 项目类别:
A Human-Trustable Self-Improving Machine Learning Framework for Rapid Disaster Responses Using Satellite Sensor Imagery
人类可信的自我改进机器学习框架,利用卫星传感器图像快速响应灾难
- 批准号:
EP/X027732/1 - 财政年份:2024
- 资助金额:
$ 40.64万 - 项目类别:
Research Grant
NSF-SNSF: Rapid Beamforming for Massive MIMO using Machine Learning on RF-only and Multi-modal Sensor Data
NSF-SNSF:在纯射频和多模态传感器数据上使用机器学习实现大规模 MIMO 的快速波束成形
- 批准号:
2401047 - 财政年份:2024
- 资助金额:
$ 40.64万 - 项目类别:
Standard Grant