NRI: INT: COLLAB: Anthropomorphic Robotic Ankle Prosthesis with Programmable Materials
NRI:INT:COLLAB:采用可编程材料的拟人机器人踝关节假体
基本信息
- 批准号:2025797
- 负责人:
- 金额:$ 74.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-12 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There are currently 2 million Americans living with an amputation; the majority of those amputations are of the lower limbs. Leg amputation is a significant life-altering event that has an overwhelmingly negative effect on many aspects of life, even years after the injury. Leg amputation can cost in excess of $1.8 million per individual. Most available prostheses are designed to replicate some aspects of normal ankle function during level-ground walking. These prostheses allow many individuals with below-knee amputation to return to basic daily activities. However, these devices are best suited for level-ground walking and many users experience difficulties during other important tasks, such as walking on slopes, stairs, or different terrains. Therefore, the general aim of this project is to address this gap in the design of existing powered ankle-foot prostheses by enabling new prosthetics that adapt to different environmental conditions commonly found in daily life. The proposed ankle-foot mechanism significantly enhances the customizability of lower leg-powered prostheses by introducing a new design approach. This project will study how the human ankle stiffness changes during different walking scenarios. The research team will use this information to design a powered ankle-foot prosthesis with properties more similar to the human ankle. In order to do so, a lightweight and modular prosthesis that uses programmable material will be developed. The modular mechanical design and control approach generates human-like characteristics and enables a larger set of users with different lengths of amputated legs to use this prosthesis. Moreover, the prosthesis' performance will be evaluated during real-world activities in dynamic environments. The focus of this project is on amputees' well-being. The resulting agile ankle foot prosthesis will help amputees improve their physical function, ability to work, and recreation, thus helping individuals return to the activities and quality of life they had prior to injury. The research findings from this project can also be applied to advance functions of exoskeletons, orthotics, and rehabilitation robots. In addition to advancing research, undergraduate and graduate students will be involved in research activities and will receive interdisciplinary education/innovation/outreach experiences. Outreach activities will allow the project team to engage diverse middle and high school students in science and engineering, especially those from underrepresented groups and low-income families. This project plans a new class of customizable agile ankle-foot prosthesis that is modular in design and has its impedance modulation decoupled from its torque control. This will be achieved by equipping a novel and recently developed powered 2-degrees of freedom (DOF) ankle-foot prosthesis with an augmented mechanism built from soft programmable material. The primary outcomes of this project will be a comprehensive understanding of how to 1) reduce the complexity of the control of ankle-foot prostheses, as observed in clinical trials, and 2) enhance prosthesis performance in real-world activities, such as walking and running on surfaces with different profiles, stiffness, and lateral inclinations. The planned work aims to address customizability issues of robotic ankle foot prostheses and address societal impact by improving amputees' quality of life and work. The main goal of this study is to consolidate the impedance control of the ankle to a mechanical module comprised of programmable material to follow the 2-D human ankle impedance. The effort will further integrate the impedance modulation with 2-DOF torque control of the ankle to provide the customizability required for tailoring an agile prosthesis to each user's need in parallel to the torque control tuning. The project researchers hypothesize that real-time control of the two-dimensional ankle impedance in a robotic ankle-foot prosthesis can improve the performance and the agility of the user during walking on surfaces with different profiles, stiffness, and inclinations. The interconnected research thrusts will provide the opportunity to offer a new solution through 1) modeling the ankle dynamics in different gait scenarios, 2) equipping a 2-DOF robotic ankle-foot prosthesis with a programmable material module, and 3) performing extensive evaluation experiments with amputees. Understanding the effect of the control and adaptation of the 2-D ankle impedance during walking with a lower extremity prosthesis will be significantly beneficial for the field of assistive robotics because it can provide guidelines for the design and control of powered prostheses, exoskeletons, and rehabilitation devices. In addition to advancing research, undergraduate and graduate students will be involved in research activities and will receive interdisciplinary education/innovation/outreach experiences. Outreach activities will allow the project team to engage diverse middle and high school students, especially those from underrepresented groups and low-income families. The findings from this project will be disseminated through publications, software sharing, and technology commercialization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
目前有200万美国人生活在截肢中,其中大多数是下肢截肢。截肢是一个重大的改变生活的事件,对生活的许多方面都有压倒性的负面影响,即使在受伤后的几年。截肢的费用可能超过180万美元。大多数可用的假肢被设计成在平地行走时复制正常踝关节功能的某些方面。这些假肢使许多膝下截肢的人能够恢复基本的日常活动。然而,这些设备最适合于平地行走,并且许多用户在其他重要任务期间遇到困难,例如在斜坡、楼梯或不同地形上行走。因此,该项目的总体目标是通过使新的假肢能够适应日常生活中常见的不同环境条件,来解决现有动力踝足假肢设计中的这一差距。所提出的踝足机构通过引入新的设计方法显着提高了小腿动力假肢的可定制性。这个项目将研究人类踝关节刚度如何在不同的行走场景中变化。研究小组将利用这些信息来设计一种动力踝足假肢,其特性与人类踝关节更相似。为了做到这一点,将开发一种使用可编程材料的轻质和模块化假体。模块化的机械设计和控制方法产生了类似人类的特征,并使具有不同截肢长度的更多用户能够使用这种假肢。此外,假体的性能将在动态环境中的真实活动中进行评估。该项目的重点是截肢者的福祉。由此产生的敏捷踝足假肢将帮助截肢者改善他们的身体功能,工作能力和娱乐能力,从而帮助个人恢复到受伤前的活动和生活质量。该项目的研究成果也可以应用于外骨骼,矫形器和康复机器人的功能。除了推进研究,本科生和研究生将参与研究活动,并将获得跨学科的教育/创新/推广经验。外联活动将使项目小组能够让不同的初中和高中学生参与科学和工程,特别是那些来自代表性不足的群体和低收入家庭的学生。该项目计划推出一类新型的可定制敏捷踝足假肢,该假肢采用模块化设计,其阻抗调制与扭矩控制分离。这将通过装备一个新的和最近开发的动力2自由度(DOF)踝足假体与增强机制建立从软可编程材料。该项目的主要成果将是全面了解如何1)降低踝足假体控制的复杂性,如临床试验中所观察到的,以及2)提高假体在现实世界活动中的性能,例如在具有不同轮廓、刚度和侧向倾斜度的表面上行走和跑步。计划中的工作旨在解决机器人踝足假肢的可定制性问题,并通过改善截肢者的生活和工作质量来解决社会影响。本研究的主要目标是巩固踝关节的阻抗控制的机械模块组成的可编程材料,以遵循2-D人体踝关节阻抗。该努力将进一步整合阻抗调制与踝关节的2-DOF扭矩控制,以提供定制敏捷假肢所需的可定制性,以满足每个用户的需求,同时进行扭矩控制调谐。项目研究人员假设,在机器人踝足假肢中实时控制二维踝关节阻抗可以提高用户在具有不同轮廓,刚度和倾斜度的表面上行走时的性能和敏捷性。相互关联的研究重点将提供一个新的解决方案的机会,通过1)在不同的步态场景中建模踝关节动力学,2)配备一个2-DOF机器人踝足假肢与可编程的材料模块,和3)进行广泛的评估实验截肢者。了解下肢假肢行走过程中2-D踝关节阻抗的控制和适应效果将对辅助机器人领域非常有益,因为它可以为动力假肢、外骨骼和康复设备的设计和控制提供指导。除了推进研究,本科生和研究生将参与研究活动,并将获得跨学科的教育/创新/推广经验。外展活动将使项目团队能够吸引不同的中学生和高中生,特别是来自代表性不足群体和低收入家庭的学生。该项目的成果将通过出版物、软件共享和技术商业化传播。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantifying Kinematic Adaptations of Gait During Walking on Terrains of Varying Surface Compliance
量化在不同表面顺应性的地形上行走时步态的运动适应
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Lehmann, Lynsey;Artemiadis, Panagiotis
- 通讯作者:Artemiadis, Panagiotis
F-VESPA: A Kinematic-based Algorithm for Real-time Heel-strike Detection During Walking
F-VESPA:一种基于运动学的算法,用于步行期间实时检测脚跟着地
- DOI:10.1109/iros51168.2021.9636335
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Karakasis, Chrysostomos;Artemiadis, Panagiotis
- 通讯作者:Artemiadis, Panagiotis
On Predicting Transitions to Compliant Surfaces in Human Gait via Neural and Kinematic Signals
- DOI:10.1109/tnsre.2023.3272355
- 发表时间:2023-01-01
- 期刊:
- 影响因子:4.9
- 作者:Angelidou,Charikleia;Artemiadis,Panagiotis
- 通讯作者:Artemiadis,Panagiotis
Real-time kinematic-based detection of foot-strike during walking
基于运动学的步行过程中足部触地的实时检测
- DOI:10.1016/j.jbiomech.2021.110849
- 发表时间:2021
- 期刊:
- 影响因子:2.4
- 作者:Karakasis, Chrysostomos;Artemiadis, Panagiotis
- 通讯作者:Artemiadis, Panagiotis
A review of soft wearable robots that provide active assistance: Trends, common actuation methods, fabrication, and applications
- DOI:10.1017/wtc.2020.4
- 发表时间:2020-09
- 期刊:
- 影响因子:0
- 作者:Carly M. Thalman;P. Artemiadis
- 通讯作者:Carly M. Thalman;P. Artemiadis
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Panagiotis Artemiadis其他文献
Kinematics, kinetics, and muscle activations during human locomotion over compliant terrains
柔顺地形上人体行走过程中的运动学、动力学和肌肉激活
- DOI:
10.1038/s41597-025-04433-x - 发表时间:
2025-01-16 - 期刊:
- 影响因子:6.900
- 作者:
Charikleia Angelidou;Vaughn Chambers;Bradley Hobbs;Chrysostomos Karakasis;Panagiotis Artemiadis - 通讯作者:
Panagiotis Artemiadis
ROBOT-ASSISTED TARGETED GAIT TRAINING
机器人辅助定向步态训练
- DOI:
10.5604/01.3001.0053.9679 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Vaughn Chambers;Madison Johnson;Panagiotis Artemiadis - 通讯作者:
Panagiotis Artemiadis
ASTRA-BF: A human-in-the-loop algorithm for predicting surface transitions in robotic lower limb prosthetics using biomechanical features
ASTRA-BF:一种用于利用生物力学特征预测机器人下肢假肢表面转换的人机循环算法
- DOI:
10.1016/j.robot.2025.105030 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:5.200
- 作者:
Charikleia Angelidou;Jaclyn M. Sions;Panagiotis Artemiadis - 通讯作者:
Panagiotis Artemiadis
Panagiotis Artemiadis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Panagiotis Artemiadis', 18)}}的其他基金
PFI:BIC - ASPIRE: hierArchical control of a Smart ankle-foot Prosthesis that supports Increased mobility for REal-life activities
PFI:BIC - ASPIRE:智能踝足假肢的分层控制,支持增加现实生活活动的活动能力
- 批准号:
2020009 - 财政年份:2019
- 资助金额:
$ 74.16万 - 项目类别:
Standard Grant
Modeling and Analysis of Sensorimotor Dynamics in Inter-leg Coupling Leads to a Novel Model-based Approach to Human Gait Rehabilitation
腿间耦合中感觉运动动力学的建模和分析带来了一种基于模型的人类步态康复新方法
- 批准号:
2015786 - 财政年份:2019
- 资助金额:
$ 74.16万 - 项目类别:
Standard Grant
NRI: INT: COLLAB: Anthropomorphic Robotic Ankle Prosthesis with Programmable Materials
NRI:INT:COLLAB:采用可编程材料的拟人机器人踝关节假体
- 批准号:
1830256 - 财政年份:2018
- 资助金额:
$ 74.16万 - 项目类别:
Standard Grant
Modeling and Analysis of Sensorimotor Dynamics in Inter-leg Coupling Leads to a Novel Model-based Approach to Human Gait Rehabilitation
腿间耦合中感觉运动动力学的建模和分析带来了一种基于模型的人类步态康复新方法
- 批准号:
1727838 - 财政年份:2017
- 资助金额:
$ 74.16万 - 项目类别:
Standard Grant
PFI:BIC - ASPIRE: hierArchical control of a Smart ankle-foot Prosthesis that supports Increased mobility for REal-life activities
PFI:BIC - ASPIRE:智能踝足假肢的分层控制,支持增加现实生活活动的活动能力
- 批准号:
1718114 - 财政年份:2017
- 资助金额:
$ 74.16万 - 项目类别:
Standard Grant
相似国自然基金
内源性逆转录病毒MER65-int调控人类胎
盘发育与子宫内膜重塑的功能研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
隐秘重组信号序列INT-RSS在T细胞受体基因Tcra重排中的功能和机制研究
- 批准号:32370939
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
HPV16 E7 通过 Int1 蛋白调控 Wnt 信号通路调节肿瘤局部树突状细胞活性
- 批准号:LQ22H160033
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
选择性PPARγ激动剂INT131调控适应性产热和AD-MSCs分化成棕色样脂肪细胞的机制研究
- 批准号:81903680
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
INT复合物调节U snRNA 3'加工的结构基础
- 批准号:31800624
- 批准年份:2018
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
沉默Int6基因的骨髓间充质干细胞复合生物支架构建血管化腹股沟疝补片及其促补片血管化机制
- 批准号:81371698
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
HIF/Int6调控迟发型EPC体外增殖的机制及其治疗重度子痫前期的可行性
- 批准号:81100439
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
NRI: INT: COLLAB: Muscle Ultrasound Sensing for Intuitive Control of Robotic Leg Prostheses
NRI:INT:COLLAB:用于机器人假肢直观控制的肌肉超声传感
- 批准号:
2054343 - 财政年份:2020
- 资助金额:
$ 74.16万 - 项目类别:
Standard Grant
NRI: INT: COLLAB: Distributed co-Robots for Strawberry Harvesting
NRI:INT:COLLAB:用于草莓采摘的分布式协作机器人
- 批准号:
1924622 - 财政年份:2019
- 资助金额:
$ 74.16万 - 项目类别:
Standard Grant
NRI: INT: COLLAB: Raining Drones: Mid-Air Release & Recovery of Atmospheric Sensing Systems
NRI:INT:协作:无人机下雨:空中发布
- 批准号:
1925052 - 财政年份:2019
- 资助金额:
$ 74.16万 - 项目类别:
Standard Grant
NRI: INT: COLLAB: Leveraging Environmental Monitoring UAS in Rainforests
NRI:INT:协作:利用雨林中的环境监测无人机
- 批准号:
1925262 - 财政年份:2019
- 资助金额:
$ 74.16万 - 项目类别:
Standard Grant
NRI: INT: COLLAB: Program Verification and Synthesis for Collaborative Robots
NRI:INT:COLLAB:协作机器人的程序验证和综合
- 批准号:
1925043 - 财政年份:2019
- 资助金额:
$ 74.16万 - 项目类别:
Standard Grant
NRI: INT: COLLAB: Muscle Ultrasound Sensing for Intuitive Control of Robotic Leg Prostheses
NRI:INT:COLLAB:用于机器人假肢直观控制的肌肉超声传感
- 批准号:
1925371 - 财政年份:2019
- 资助金额:
$ 74.16万 - 项目类别:
Standard Grant
NRI: INT: COLLAB: Muscle Ultrasound Sensing for Intuitive Control of Robotic Leg Prostheses
NRI:INT:COLLAB:用于机器人假肢直观控制的肌肉超声传感
- 批准号:
1925343 - 财政年份:2019
- 资助金额:
$ 74.16万 - 项目类别:
Standard Grant
NRI: INT: COLLAB: Leveraging Environmental Monitoring UAS in Rainforests
NRI:INT:协作:利用雨林中的环境监测无人机
- 批准号:
1925368 - 财政年份:2019
- 资助金额:
$ 74.16万 - 项目类别:
Standard Grant
NRI: INT: COLLAB: Mesh Of Robots on a Pneumatic Highway (MORPH): An Untethered, Human-Safe, Shape-Morphing Robotic Platform
NRI:INT:COLLAB:气动高速公路上的机器人网格 (MORPH):一个不受束缚、对人类安全、可变形的机器人平台
- 批准号:
1925373 - 财政年份:2019
- 资助金额:
$ 74.16万 - 项目类别:
Standard Grant
NRI: INT: COLLAB: Distributed co-Robots for Strawberry Harvesting
NRI:INT:COLLAB:用于草莓采摘的分布式协作机器人
- 批准号:
1924662 - 财政年份:2019
- 资助金额:
$ 74.16万 - 项目类别:
Standard Grant