EAGER: Collaborative Research:III: Exploring Physics Guided Machine Learning for Accelerating Sensing and Physical Sciences

EAGER:协作研究:III:探索物理引导机器学习以加速传感和物理科学

基本信息

项目摘要

As machine learning (ML) continues to revolutionize the commercial space including vision, speech, andtext recognition, there is a huge anticipation in the scientific community to unlock the power of ML foraccelerating scientific discovery. However, black-box ML models, which rely solely on training data andignore existing scientific knowledge have met with limited success in scientific problems, particularlywhen labeled data is limited, sometimes even leading to spectacular failures. This is because the blackbox ML models are susceptible to learning spurious relationships that do not generalize well outside thedata they are trained for. The emerging paradigm of physics-guided machine learning (PGML), whichleverages the unique ability of ML algorithms to automatically extract patterns and models from data withguidance of the knowledge accumulated in physics (or scientific theories), aims to address the challengesfaced by black box ML in scientific applications.For data science, PGML has the potential to transform ML beyond black-box applications by enablingsolutions that generalize well even on unseen input-output distributions that are different from thoseencountered during training, by anchoring ML methods with the scientific body of knowledge. PGML makes a distinctdeparture from the conventional view that physics-based models and ML models are developed inisolation but seldom mixed together. The proposed project is fundamentally different from existing bodyof research that attempts to combine ML and domain sciences, e.g., by making use of domain-specificknowledge in ML algorithms in simplistic ways, or making use of data in the physics-based modelingprocess albeit without allowing data to change the functional forms of existing physics-based models. The tight interplay between data science and the domains of physics and sensing in the project lends itselfnaturally to diverse education activities that complement the research tasks outlined by our team. Over theduration of this one-year project, the team will develop an integrative course at the graduate level on "MLmeets Physics", which explores topical, emerging themes in this interdisciplinary area. Offerings of thecourse will draw upon course modules shared between the four universities, such as shared guest videosand case studies. The physics department at BU has a well-developed "Physics Outreach Project" thatannually performs science exhibitions for elementary schools in Binghamton metropolitan area, for whichthe team will create a new exhibition about neural networks and ML. In follow-on work, similar outreachevents will be replicated at schools (Robinson Middle School in Lowell and Metro STEM Middle Schoolin Columbus). The PIs are committed to increasing the diversity of involvement at various levels of thetraining ecosystem impacted by this project, and have planned various coordinated broader impactactivities for inclusion of female and underrepresented minority students as well as faculty.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着机器学习(ML)继续彻底改变商业空间,包括愿景,语音,和文本识别,科学界有一个巨大的期望,可以解锁ML强调科学发现的力量。但是,仅依靠培训数据和现有科学知识的黑盒ML模型在科学问题上取得了有限的成功,尤其是标记的数据是有限的,有时甚至导致了壮观的失败。这是因为BlackBox ML模型很容易受到学习的虚假关系,这些关系并不能很好地概括他们的训练之外。物理学引导的机器学习(PGML)的新兴范式却阐明了ML算法在物理学(或科学理论)中积累的知识(或科学理论)自动从数据中自动从数据中提取图案和模型的独特能力即使在训练中与训练过程中遇到的那些遇到的那些不同的输入输出分布,也可以很好地概括通过科学知识体系锚定ML方法。 PGML从传统观点中脱颖而出,即基于物理学的模型和ML模型是不可分化的,但很少混合在一起。所提出的项目与现有的Bodyof研究根本不同,该研究试图通过简单的方式使用ML算法中的域规范性,或者在物理基于物理的模型中使用数据,尽管不允许数据更改现有物理学模型的功能形式,但使用ML算法中的域规范化。数据科学与物理领域和项目中的紧密相互作用与我们团队概述的研究任务的多样化的教育活动自然而然。在这个为期一年的项目中,该团队将在“ MLMeets Physics”上开发一门综合课程,该课程探讨了该跨学科领域的主题,新兴的主题。 TheCourse的产品将借鉴四所大学之间共享的课程模块,例如共享的来宾视频和案例研究。 BU的物理系有一个完善的“物理外展项目”,该项目旨在为宾厄姆顿都会区的小学进行科学展览,为此,该团队将创建有关神经网络和ML的新展览。在后续工作中,将在学校(洛厄尔的鲁滨逊中学和哥伦布大都会中学的罗宾逊中学)复制类似的外展文章。 PI致力于增加受该项目影响的各个级别的生态系统的参与度的多样性,并计划为包括女性和代表性不足的少数群体和教职员工的各种协调的更广泛的影响力以及该奖项的奖项反映了NSF的法定责任,并通过评估范围来进行评估,并反映了该奖项,并反映了企业的支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
PID-GAN: A GAN Framework based on a Physics-informed Discriminator for Uncertainty Quantification with Physics
Quadratic residual networks: A new class of neural networks for solving forward and inverse problems in physics involving pdes
  • DOI:
    10.1137/1.9781611976700.76
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bu, J.;Karpatne, A.
  • 通讯作者:
    Karpatne, A.
Learning Compact Representations of Neural Networks using DiscriminAtive Masking (DAM)
  • DOI:
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jie Bu;Arka Daw;M. Maruf;A. Karpatne
  • 通讯作者:
    Jie Bu;Arka Daw;M. Maruf;A. Karpatne
CoPhy-PGNN: Learning Physics-guided Neural Networks with Competing Loss Functions for Solving Eigenvalue Problems
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anuj Karpatne其他文献

Anuj Karpatne的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anuj Karpatne', 18)}}的其他基金

CAREER: Unifying Scientific Knowledge with Machine Learning for Forward, Inverse, and Hybrid Modeling of Scientific Systems
职业:将科学知识与机器学习相结合,对科学系统进行正向、逆向和混合建模
  • 批准号:
    2239328
  • 财政年份:
    2023
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Continuing Grant
Collaborative Research: MRA: Advancing process understanding of lake water quality to macrosystem scales with knowledge-guided machine learning
合作研究:MRA:通过知识引导的机器学习将湖泊水质的过程理解推进到宏观系统尺度
  • 批准号:
    2213550
  • 财政年份:
    2022
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
III:Medium:Physics-guided Machine Learning for Predicting Cell Trajectories, Shapes, and Interactions in Complex Dynamic Environments
III:中:物理引导机器学习,用于预测复杂动态环境中的细胞轨迹、形状和相互作用
  • 批准号:
    2107332
  • 财政年份:
    2021
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Biology-guided neural networks for discovering phenotypic traits
合作研究:生物学引导的神经网络发现表型特征
  • 批准号:
    1940247
  • 财政年份:
    2019
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Continuing Grant

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
在线医疗团队协作模式与绩效提升策略研究
  • 批准号:
    72371111
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
  • 批准号:
    62373044
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
  • 批准号:
    82372548
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
  • 批准号:
    32302064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了