CAREER: Unifying Scientific Knowledge with Machine Learning for Forward, Inverse, and Hybrid Modeling of Scientific Systems

职业:将科学知识与机器学习相结合,对科学系统进行正向、逆向和混合建模

基本信息

项目摘要

One of the fundamental goals in science is to build mathematical models of scientific systems that can explain the nature of the physical world by predicting the system's behavior. Current standards of science-based models, rooted in scientific theories and equations, suffer from several shortcomings in modeling complex real-world systems. At the core of these shortcomings is their theoretical scientific nature that restricts them from making effective use of data that is not well-described theoretically. Consequently, machine learning methods, that can automatically extract patterns and relationships from data, are increasingly being viewed as promising alternatives to science-based models. However, black-box machine learning models, that solely rely on information contained in data and are agnostic to scientific theories, have met with limited success in scientific problems. Instead, there is a growing realization to unify scientific knowledge with machine learning in the emerging field of knowledge-guided machine learning. This project aims to make novel advances in knowledge-guided machine learning in the context of three driving use-cases: fluid dynamics, aerosol modeling, and lake modeling. A central goal of this project is to prepare the next generation of workforce in science and engineering comprising of a diverse cadre of students who can easily cross disciplinary boundaries between machine learning and scientific fields. This project will also have direct impacts to science and society through the three real-world use-cases and through collaborations with industry partners. The long-term vision of this project is to establish knowledge-guided machine learning as a full-fledged research and education discipline for the advancement of science. This project aims to make novel advances in three primary research tasks of knowledge-guided machine learning: forward modeling with scientific equations and data, inverse modeling for inferring parameters in science-based models, and hybrid-science-machine learning modeling to remove imperfections in science-based models. This project will contribute transformative innovations in knowledge-guided machine learning for incorporating a wide variety of scientific knowledge in machine learning frameworks, from partial differential equations in fluid dynamics to numerical models in aerosol modeling and phenomenological rules in lake modeling. In the task of forward modeling, this project will develop a new class of algorithms in science-guided curriculum learning to exploit the interplay between data-driven and scientific supervision while training deep learning models. This project will also develop novel science-guided resampling strategies for generating scientifically consistent predictions during inference. In the task of inverse modeling, this project will lead to novel formulations of knowledge-guided inverse modeling, where scientific supervision (in terms of knowledge of the forward model) is used to guide the training of machine learning-based inverse models. In the task of hybrid modeling, this project will result in a new class of residual correcting neural networks for augmenting systematic biases or residuals in science-based outputs, and methods to jointly infer parameters of science-based models while correcting for residuals in their outputs. Beyond the three use-cases, the methodologies developed in this project can potentially impact a number of scientific disciplines where scientific knowledge and models are routinely used.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
科学的基本目标之一是建立科学系统的数学模型,这些模型可以通过预测系统的行为来解释物理世界的本质。当前的基于科学的模型标准植根于科学理论和方程式,在对复杂的现实世界系统进行建模方面存在几个缺陷。这些缺陷的核心是它们的理论科学性,这限制了它们有效利用理论上没有很好描述的数据。因此,机器学习方法可以自动从数据中提取模式和关系,越来越多地被视为基于科学的模型的有前途的替代方案。然而,仅依赖于数据中包含的信息并不依赖于科学理论的黑盒机器学习模型,在科学问题上取得的成功有限。相反,在知识制导的机器学习这一新兴领域,人们越来越意识到将科学知识与机器学习相结合。这个项目的目标是在三个驾驶用例的背景下,在知识制导的机器学习方面取得新的进展:流体动力学、气溶胶建模和湖泊建模。该项目的一个中心目标是为科学和工程领域的下一代劳动力做好准备,这些劳动力包括一批能够轻松跨越机器学习和科学领域之间的学科界限的多样化的学生干部。该项目还将通过三个真实世界的用例以及通过与行业合作伙伴的合作对科学和社会产生直接影响。该项目的长期愿景是建立以知识为导向的机器学习,使其成为促进科学进步的成熟的研究和教育学科。本项目的目标是在知识制导的机器学习的三个主要研究任务上取得新的进展:基于科学方程和数据的正向建模,用于推断基于科学的模型中的参数的反向建模,以及消除基于科学的模型的缺陷的混合科学-机器学习建模。该项目将促进知识导向的机器学习的变革性创新,将各种科学知识纳入机器学习框架,从流体动力学的偏微分方程式到气溶胶模拟的数值模型,以及湖泊模拟的现象学规则。在正向建模任务中,该项目将在科学指导的课程学习中开发一类新的算法,以在训练深度学习模型的同时利用数据驱动和科学监督之间的相互作用。该项目还将开发新的以科学为导向的重采样策略,以在推理过程中产生科学上一致的预测。在逆向建模方面,本项目将提出一种新的知识制导的逆向建模方法,利用科学的监督(根据正向模型的知识)来指导基于机器学习的逆向模型的训练。在混合建模任务中,该项目将产生一类新的残差校正神经网络,用于增强基于科学的输出中的系统偏差或残差,以及在校正其输出中的残差的同时联合推断基于科学的模型的参数的方法。除了这三个用例,这个项目中开发的方法可能会影响一些经常使用科学知识和模型的科学学科。这个奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anuj Karpatne其他文献

Anuj Karpatne的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anuj Karpatne', 18)}}的其他基金

Collaborative Research: MRA: Advancing process understanding of lake water quality to macrosystem scales with knowledge-guided machine learning
合作研究:MRA:通过知识引导的机器学习将湖泊水质的过程理解推进到宏观系统尺度
  • 批准号:
    2213550
  • 财政年份:
    2022
  • 资助金额:
    $ 59.57万
  • 项目类别:
    Standard Grant
III:Medium:Physics-guided Machine Learning for Predicting Cell Trajectories, Shapes, and Interactions in Complex Dynamic Environments
III:中:物理引导机器学习,用于预测复杂动态环境中的细胞轨迹、形状和相互作用
  • 批准号:
    2107332
  • 财政年份:
    2021
  • 资助金额:
    $ 59.57万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research:III: Exploring Physics Guided Machine Learning for Accelerating Sensing and Physical Sciences
EAGER:协作研究:III:探索物理引导机器学习以加速传感和物理科学
  • 批准号:
    2026710
  • 财政年份:
    2020
  • 资助金额:
    $ 59.57万
  • 项目类别:
    Standard Grant
Collaborative Research: Biology-guided neural networks for discovering phenotypic traits
合作研究:生物学引导的神经网络发现表型特征
  • 批准号:
    1940247
  • 财政年份:
    2019
  • 资助金额:
    $ 59.57万
  • 项目类别:
    Continuing Grant

相似海外基金

UNIfying Grid-FOllowing And Grid-foRMing Control In Inverter-based Resources (UNIFORM)
统一基于逆变器的资源中的网格跟随和网格形成控制(UNIFORM)
  • 批准号:
    EP/Y001575/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.57万
  • 项目类别:
    Research Grant
Unifying Object Detection and Image Captioning using Vision-Language Knowledge Base for Open-World Comprehension
使用视觉语言知识库统一对象检测和图像描述以实现开放世界理解
  • 批准号:
    24K20830
  • 财政年份:
    2024
  • 资助金额:
    $ 59.57万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Dual Reinforcement Learning: A Unifying Framework with Guarantees
职业:双重强化学习:有保证的统一框架
  • 批准号:
    2340651
  • 财政年份:
    2024
  • 资助金额:
    $ 59.57万
  • 项目类别:
    Continuing Grant
A unifying model for ion exchange membranes – towards a low carbon future
离子交换膜的统一模型 — 迈向低碳未来
  • 批准号:
    DP240101405
  • 财政年份:
    2024
  • 资助金额:
    $ 59.57万
  • 项目类别:
    Discovery Projects
Unifying Pre-training and Multilingual Semantic Representation Learning for Low-resource Neural Machine Translation
统一预训练和多语言语义表示学习以实现低资源神经机器翻译
  • 批准号:
    22KJ1843
  • 财政年份:
    2023
  • 资助金额:
    $ 59.57万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Unifying discrete and continuous methods in quantum information theory
统一量子信息论中的离散和连续方法
  • 批准号:
    FT230100571
  • 财政年份:
    2023
  • 资助金额:
    $ 59.57万
  • 项目类别:
    ARC Future Fellowships
"Circular Transparency Platform", unifying the apparel value chain: From Thread to Second Life+. Enabling stakeholders from manufacturing and retail, to engage consumers with visual, incentivised Environmental, Social and Circular product experiences
“循环透明平台”,统一服装价值链:从Thread到Second Life。
  • 批准号:
    10059608
  • 财政年份:
    2023
  • 资助金额:
    $ 59.57万
  • 项目类别:
    Collaborative R&D
Unifying models of information processing across machine learning, artificial intelligence and neuroscience
统一机器学习、人工智能和神经科学的信息处理模型
  • 批准号:
    EP/X011151/1
  • 财政年份:
    2023
  • 资助金额:
    $ 59.57万
  • 项目类别:
    Fellowship
CAREER: Unifying Neuroscience and Biomechanics Paradigms for Modeling Brain and Muscle Responses to Mechanical Impacts
职业:统一神经科学和生物力学范式,模拟大脑和肌肉对机械冲击的反应
  • 批准号:
    2239110
  • 财政年份:
    2023
  • 资助金额:
    $ 59.57万
  • 项目类别:
    Continuing Grant
Collaborative Research: A Unifying Deep Learning Framework Using Cell Complex Neural Networks
协作研究:使用细胞复杂神经网络的统一深度学习框架
  • 批准号:
    2323062
  • 财政年份:
    2023
  • 资助金额:
    $ 59.57万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了