ATD: Gaussian Fields: Graph Representations and Black-Box Optimization Algorithms

ATD:高斯场:图表示和黑盒优化算法

基本信息

  • 批准号:
    2027056
  • 负责人:
  • 金额:
    $ 18.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-15 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

The increasing amount of data and complexity of models used in science and engineering calls for collaborative and interdisciplinary research at the intersection of computational mathematics, statistics and machine learning. This project will develop novel computational mathematics with the aim of facilitating the statistical analysis of large and unstructured spatial data-sets using Gaussian field methods. Gaussian fields are standard models in statistics and machine learning, but their application to large data sets is notoriously difficult. The investigator will show through mathematical reasoning and practical examples that a standard family of Gaussian fields can be accurately approximated using graphs in such a way that the statistical analysis scales favorably to large data sets. As a result, the benefit of sound statistical modeling through Gaussian fields is made possible in large data regimes of current interest. In addition, the investigator will explore new computationally efficient methods that allow one to combine highly complex models with data. A central part of the project will be the training of graduate students in the Computational and Applied Mathematics (CAM) program at the University of Chicago. To that end, the investigator will i) introduce topics of current research interest in uncertainty quantification and spatial statistics in CAM and Statistics courses, both at the Master’s and PhD levels; ii) serve as PhD and Master's thesis adviser of CAM students; iii) help organize the CAM colloquium and the CAM student colloquium, allowing students to learn from, and interact with, leading experts in spatial statistics, Bayesian inverse problems and graph-based learning; and iv) disseminate the accomplished work through conference and seminar presentations.This project has two research thrusts that share a common theme of pushing forward the use of Gaussian field methods. First, the investigator will develop and analyze graph representations of Gaussian fields for the statistical analysis of discrete and unstructured spatial datasets. Second, the investigator will design and numerically explore novel black-box, derivative free optimization schemes that combine Bayesian optimization with ensemble Kalman methods. The graph representations to be used stem from the stochastic partial differential equation (SPDE) approach to Gaussian fields, one of the breakthroughs in spatial statistics in the last decade. The main idea of the SPDE approach is to define Gaussian fields as the solution to an SPDE and represent the solution using finite elements, a perspective that has inspired many modeling and computational developments. The investigator will introduce and explore graph representations, showing through rigorous analysis and numerical examples that they provide a natural way to generalize the Matérn model to unstructured datasets. The investigator will also demonstrate that graph representations seamlessly unify Gaussian field methods in spatial statistics, graph-based machine learning and Bayesian inverse problems, and will transfer several concrete computational methods and modeling ideas across these three communities. The second research thrust will concern the development of new black-box, derivative free optimization schemes. The investigator will conduct a thorough numerical comparison of existing methods, and will explore new ones. Specific objectives of this project include i) to introduce graph-based covariance models for large and unstructured discrete geospatial datasets, beyond Euclidean settings; ii) to suggest graph representations of a wide family of models in spatial statistics, providing an alternative approach to existing finite element and finite difference representations; iii) to set forward the theoretical foundations of graph representations of Gaussian fields and investigate their use in specific applications; and iv) to develop and numerically test new black-box optimization schemes, exploring their use in a variety of applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
科学和工程中使用的越来越多的数据量和模型的复杂性要求在计算数学、统计学和机器学习的交叉点上进行协作和跨学科研究。该项目将开发新的计算数学,目的是促进使用高斯场方法对大型非结构化空间数据集进行统计分析。高斯场是统计学和机器学习中的标准模型,但它们在大数据集上的应用是出了名的困难。研究人员将通过数学推理和实际例子证明,标准的高斯场族可以用图形准确地逼近,这样统计分析就可以很好地扩展到大型数据集。因此,在当前感兴趣的大数据区域中,通过高斯场进行声音统计建模的好处成为可能。此外,研究人员将探索新的计算效率高的方法,使人们能够将高度复杂的模型与数据结合起来。该项目的核心部分将是对芝加哥大学计算和应用数学(CAM)项目的研究生进行培训。为此,研究人员将:i)在硕士和博士级别的CAM和统计学课程中介绍当前对不确定性量化和空间统计学的研究感兴趣的主题;ii)担任CAM学生的博士和硕士论文导师;iii)帮助组织CAM座谈会和CAM学生座谈会,允许学生向空间统计学、贝叶斯反问题和基于图形的学习领域的顶尖专家学习并与其互动;以及iv)通过会议和研讨会演讲来传播已完成的工作。该项目有两个共同的研究主题,即推动高斯场方法的使用。首先,研究人员将开发和分析高斯场的图形表示,用于离散和非结构化空间数据集的统计分析。其次,研究人员将设计和数值探索新的黑箱、无导数的优化方案,将贝叶斯优化与集成卡尔曼方法相结合。所使用的图形表示源于对高斯场的随机偏微分方程(SPDE)方法,这是过去十年空间统计学的突破之一。SPDE方法的主要思想是将高斯场定义为SPDE的解,并使用有限元来表示解,这一观点启发了许多建模和计算发展。研究人员将介绍和探索图形表示法,通过严格的分析和数值例子表明,它们提供了一种将Matérn模型推广到非结构化数据集的自然方法。研究人员还将展示,图形表示将空间统计、基于图形的机器学习和贝叶斯反问题中的高斯场方法无缝地统一起来,并将在这三个社区中传递几种具体的计算方法和建模思想。第二个研究重点将涉及新的黑箱、免导数优化方案的开发。研究人员将对现有方法进行彻底的数字比较,并将探索新的方法。该项目的具体目标包括:i)在欧几里得环境之外,为大型和非结构化离散地理空间数据集引入基于图形的协方差模型;ii)建议空间统计学中的一大类模型的图形表示,提供现有有限元和有限差表示的替代方法;iii)提出高斯场的图形表示的理论基础,并研究它们在具体应用中的使用;以及iv)开发和数值测试新的黑盒优化方案,探索它们在各种应用中的应用。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Iterative ensemble Kalman methods: A unified perspective with some new variants
迭代集成卡尔曼方法:具有一些新变体的统一视角
  • DOI:
    10.3934/fods.2021011
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Chada, Neil K.;Chen, Yuming;Sanz-Alonso, Daniel
  • 通讯作者:
    Sanz-Alonso, Daniel
Unlabeled data help in graph-based semi-supervised learning: a Bayesian nonparametrics perspective
无标签数据有助于基于图的半监督学习:贝叶斯非参数视角
HMC: Reducing the number of rejections by not using leapfrog and some results on the acceptance rate
  • DOI:
    10.1016/j.jcp.2021.110333
  • 发表时间:
    2021-04-13
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Calvo, M. P.;Sanz-Alonso, D.;Sanz-Serna, J. M.
  • 通讯作者:
    Sanz-Serna, J. M.
Graph-based prior and forward models for inverse problems on manifolds with boundaries
基于图的先验和前向模型,用于解决带边界流形上的反问题
  • DOI:
    10.1088/1361-6420/ac3994
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Harlim, John;Jiang, Shixiao W;Kim, Hwanwoo;Sanz-Alonso, Daniel
  • 通讯作者:
    Sanz-Alonso, Daniel
Hierarchical ensemble Kalman methods with sparsity-promoting generalized gamma hyperpriors
具有稀疏性促进广义伽玛超先验的分层集成卡尔曼方法
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Kim, H;Sanz-Alonso, D;Strang, A
  • 通讯作者:
    Strang, A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Sanz-Alonso其他文献

Daniel Sanz-Alonso的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Sanz-Alonso', 18)}}的其他基金

CAREER: Ensemble Kalman Methods and Bayesian Optimization in Inverse Problems and Data Assimilation
职业:反问题和数据同化中的集成卡尔曼方法和贝叶斯优化
  • 批准号:
    2237628
  • 财政年份:
    2023
  • 资助金额:
    $ 18.11万
  • 项目类别:
    Continuing Grant
Collaborative Research: Machine Learning and Inverse Problems in Discrete and Continuous Settings
协作研究:离散和连续环境中的机器学习和反问题
  • 批准号:
    1912818
  • 财政年份:
    2019
  • 资助金额:
    $ 18.11万
  • 项目类别:
    Standard Grant

相似国自然基金

强磁场下基于Hylleraas-Gaussian基的双电子双原子分子的谱结构
  • 批准号:
    11504315
  • 批准年份:
    2015
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Adaptive Gaussian Markov Random Fields for Large-scale Discrete Optimization via Simulation
协作研究:通过仿真实现大规模离散优化的自适应高斯马尔可夫随机场
  • 批准号:
    2243210
  • 财政年份:
    2022
  • 资助金额:
    $ 18.11万
  • 项目类别:
    Standard Grant
Random fields: non-Gaussian stochastic models and approximation schemes
随机场:非高斯随机模型和近似方案
  • 批准号:
    DP220101680
  • 财政年份:
    2022
  • 资助金额:
    $ 18.11万
  • 项目类别:
    Discovery Projects
Collaborative Research: Adaptive Gaussian Markov Random Fields for Large-scale Discrete Optimization via Simulation
协作研究:通过仿真实现大规模离散优化的自适应高斯马尔可夫随机场
  • 批准号:
    1854659
  • 财政年份:
    2019
  • 资助金额:
    $ 18.11万
  • 项目类别:
    Standard Grant
CBMS Conference: Gaussian Random Fields, Fractals, Stochastic Partial Differential Equations, and Extremes
CBMS 会议:高斯随机场、分形、随机偏微分方程和极值
  • 批准号:
    1933330
  • 财政年份:
    2019
  • 资助金额:
    $ 18.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Adaptive Gaussian Markov Random Fields for Large-scale Discrete Optimization via Simulation
协作研究:通过仿真实现大规模离散优化的自适应高斯马尔可夫随机场
  • 批准号:
    1854562
  • 财政年份:
    2019
  • 资助金额:
    $ 18.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Multi-Scale Modeling of Non-Gaussian Random Fields
合作研究:非高斯随机场的多尺度建模
  • 批准号:
    1811405
  • 财政年份:
    2018
  • 资助金额:
    $ 18.11万
  • 项目类别:
    Standard Grant
Collaborative Research: Multi-Scale Modeling of Non-Gaussian Random Fields
合作研究:非高斯随机场的多尺度建模
  • 批准号:
    1811279
  • 财政年份:
    2018
  • 资助金额:
    $ 18.11万
  • 项目类别:
    Standard Grant
Exceptional Sets of Gaussian Free Fields
特殊的高斯自由场集
  • 批准号:
    515691-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 18.11万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Landscape of high-dimensional Gaussian Free Fields
高维高斯自由场景观
  • 批准号:
    498118-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 18.11万
  • 项目类别:
    University Undergraduate Student Research Awards
Efficient Monte Carlo Methods for Gaussian Random Fields
高斯随机场的高效蒙特卡罗方法
  • 批准号:
    1069064
  • 财政年份:
    2011
  • 资助金额:
    $ 18.11万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了