RAPID: Fine-Grained, Privacy-Responding Contact Traceback for COVID-19 Epidemiology
RAPID:针对 COVID-19 流行病学的细粒度、隐私响应型接触者追溯
基本信息
- 批准号:2027647
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project, CoV-2-Traceback, enables approaches that mitigate the negative effects of COVID-19 by facilitating the process of contact tracing during an epidemic. The approach eschews explicit location tracking, instead using granular signal monitoring techniques at mobile phones to infer the physical proximity of pairs of phones. The work will also respect user privacy, by giving users control over the data the system collects, in three ways: first, the data the system collects will be stored on the mobile phone itself, second, users will be empowered to clear that data from their phones, or opt-out of the system entirely, and third, each step of the traceback will occur with individual user consent. This automated and highly specific traceback will advance the national health and secure the national defense, both speeding up the process of contact traceback and extending the utility of contact traceback into the latter stages of a pandemic when the goal is to delay and lower daily infection rates. From a societal standpoint, the work aims to engage cellular chipset manufacturers, cellular network providers, and state and national health authorities in the national COVID-19 mitigation effort.CoV-2-Traceback enables approaches that mitigate the negative effects of COVID-19 by automating the identification and traceback of recent significant risk contacts of a confirmed SARS-CoV-2 case. Instead of relying on GPS, which does not work well indoors and in many urban settings, signal processing algorithms examine the cellular control channel to determine whether and for how long other people are proximal to a confirmed positive case. Current medical knowledge indicates that the riskiest exposures involve both time and proximity of contact, but there is a challenge in identifying such exposures with a high specificity that existing technology does not yet meet. The project develops a traceback protocol that resolves a newly-diagnosed user's phone identifiers and then submits phone identifies meeting the foregoing proximity criteria to cellular providers, so they can identify close contacts of the newly-diagnosed case. As COVID-19 surveillance efforts ramp up in each state, the project will leverage state- and county-level background infection rates to validate CoV-2-Traceback's accuracy. Comparing with traditional methods for contact tracing, it will also quantify whether the approach is indeed more specific, flagging fewer patients who in the end turn out to be COVID-19 negative.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个名为CoV-2-Traceback的项目通过促进疫情期间的接触者追踪过程,实现了减轻COVID-19负面影响的方法。 该方法避免了显式的位置跟踪,而是在移动的电话上使用粒度信号监测技术来推断成对电话的物理接近度。 这项工作还将尊重用户隐私,通过三种方式让用户控制系统收集的数据:首先,系统收集的数据将存储在移动的手机上,其次,用户将有权从手机中清除数据,或者选择完全退出系统,第三,追溯的每一步都将在个人用户同意的情况下进行。 这种自动化和高度特异性的追溯将促进国家健康并确保国防安全,既加快了接触追溯的过程,又将接触追溯的实用性扩展到大流行的后期阶段,目标是延迟和降低每日感染率。 从社会的角度来看,这项工作旨在让蜂窝芯片组制造商、蜂窝网络提供商以及州和国家卫生当局参与国家COVID-19缓解工作。CoV-2-Traceback通过自动识别和追溯确诊的SARS-CoV-2病例的近期重大风险接触者,实现减轻COVID-19负面影响的方法。 信号处理算法不再依赖GPS,因为GPS在室内和许多城市环境中工作效果不佳,而是检查蜂窝控制信道,以确定其他人是否接近确诊阳性病例以及距离该病例有多长时间。 目前的医学知识表明,最危险的接触涉及接触的时间和距离,但在以现有技术尚不能满足的高度特异性识别这种接触方面存在挑战。 该项目开发了一种追溯协议,该协议解析新诊断用户的电话标识符,然后将符合上述接近标准的电话标识符提交给蜂窝提供商,以便他们能够识别新诊断病例的密切接触者。 随着各州COVID-19监测工作的加强,该项目将利用州和县一级的背景感染率来验证CoV-2-Traceback的准确性。 与传统的接触者追踪方法相比,它还将量化该方法是否确实更具体,标记最终证明为COVID-19阴性的患者更少。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Invited Paper: The Case for Small-Scale, Mobile-Enhanced COVID-19 Epidemiology
特邀论文:小规模、移动增强的 COVID-19 流行病学案例
- DOI:10.23919/wiopt52861.2021.9589290
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Yi, Fan;Xie, Yaxiong;Jamieson, Kyle
- 通讯作者:Jamieson, Kyle
Cellular-Assisted, Deep Learning Based COVID-19 Contact Tracing
- DOI:10.1145/3550332
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:Fan Yi;Yaxiong Xie;Kyle Jamieson
- 通讯作者:Fan Yi;Yaxiong Xie;Kyle Jamieson
Cellular-Assisted COVID-19 Contact Tracing
蜂窝辅助 COVID-19 接触者追踪
- DOI:10.1145/3469258.3469848
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Yi, Fan;Xie, Yaxiong;Jamieson, Kyle
- 通讯作者:Jamieson, Kyle
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kyle Jamieson其他文献
Physics-Inspired Discrete-Phase Optimization for 3D Beamforming with PIN-Diode Extra-Large Antenna Arrays
利用 PIN 二极管超大天线阵列进行 3D 波束成形的物理启发离散相位优化
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Minsung Kim;Annalise Stockley;Keith Briggs;Kyle Jamieson - 通讯作者:
Kyle Jamieson
Wall-Street: Smart Surface-Enabled 5G mmWave for Roadside Networking
华尔街:用于路边网络的智能表面支持 5G 毫米波
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kun Woo Cho;Prasanthi Maddala;I. Seskar;Kyle Jamieson - 通讯作者:
Kyle Jamieson
Optimizing Reconfigurable Antenna MIMO Systems with Coherent Ising Machines
使用相干调频机优化可重构天线 MIMO 系统
- DOI:
10.48550/arxiv.2403.12571 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ioannis Krikidis;A. Singh;Kyle Jamieson - 通讯作者:
Kyle Jamieson
LoLa: Low-Latency Realtime Video Conferencing over Multiple Cellular Carriers
LoLa:通过多个蜂窝运营商的低延迟实时视频会议
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Sara Ayoubi;Giulio Grassi;Giovanni Pau;Kyle Jamieson;Renata Teixeira - 通讯作者:
Renata Teixeira
Consumer acceptance and response to SMS advertising
消费者对短信广告的接受度和反应
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Kyle Jamieson - 通讯作者:
Kyle Jamieson
Kyle Jamieson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kyle Jamieson', 18)}}的其他基金
Collaborative Research: SII-NRDZ:Spectrum Sharing via Consumption Models and Telemetry - Prototyping and Field Testing in an Urban FCC Innovation Zone
合作研究:SII-NRDZ:通过消费模型和遥测实现频谱共享 - 城市 FCC 创新区的原型设计和现场测试
- 批准号:
2232457 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
IMR: MT: Fine-Grained Telemetry for Next-Generation Cellular Access Networks (NG-Scope)
IMR:MT:下一代蜂窝接入网络的细粒度遥测(NG-Scope)
- 批准号:
2223556 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
NeTS: Collaborative Research: Assessing the Feasibility of Programming the Ambient Wireless Environment
NeTS:协作研究:评估对周围无线环境进行编程的可行性
- 批准号:
1763309 - 财政年份:2018
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
SpecEES: Collaborative Research: Advancing the Wireless Spectral Frontier with Quantum-Enabled Computational Techniques (QENeTs)
SpecEES:协作研究:利用量子计算技术 (QENeT) 推进无线频谱前沿
- 批准号:
1824357 - 财政年份:2018
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
NeTS: Small: Continuous Spatial Awareness (CoSA) for Smart and Connected Objects
NeTS:小型:智能和互联对象的连续空间感知 (CoSA)
- 批准号:
1617161 - 财政年份:2016
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似海外基金
AIGMob: Conditional Generative AI for Fine-grained Urban Mobility Simulation
AIGMob:用于细粒度城市交通模拟的条件生成人工智能
- 批准号:
24K02996 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Fine-grained music source separation with deep learning models
利用深度学习模型进行细粒度音乐源分离
- 批准号:
10107090 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Collaborative R&D
RII Track-4:NSF: Federated Analytics Systems with Fine-grained Knowledge Comprehension: Achieving Accuracy with Privacy
RII Track-4:NSF:具有细粒度知识理解的联合分析系统:通过隐私实现准确性
- 批准号:
2327480 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
CAREER: Distances and matchings under the lens of fine-grained complexity
职业:细粒度复杂性镜头下的距离和匹配
- 批准号:
2337901 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: SII-NRDZ: SweepSpace: Enabling Autonomous Fine-Grained Spatial Spectrum Sensing and Sharing
合作研究:SII-NRDZ:SweepSpace:实现自主细粒度空间频谱感知和共享
- 批准号:
2348589 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
SHF: Small: Domain-Specific FPGAs to Accelerate Unrolled DNNs with Fine-Grained Unstructured Sparsity and Mixed Precision
SHF:小型:特定领域 FPGA 加速具有细粒度非结构化稀疏性和混合精度的展开 DNN
- 批准号:
2303626 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Efficacy and Durability of Microbially Induced Desaturation to Mitigate Liquefaction in Fine-grained Soils
合作研究:微生物诱导去饱和缓解细粒土壤液化的功效和持久性
- 批准号:
2242227 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Energy-efficient Computing Through Fine-grained Energy Accounting
通过细粒度能源核算实现节能计算
- 批准号:
2883684 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Studentship
Towards Real-Time Fine-Grained Tracking in Distributed Large-Scale RF Tag Systems
实现分布式大规模射频标签系统中的实时细粒度跟踪
- 批准号:
2225337 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
CAREER: Towards sensing and understanding fine-grained body postures in daily life using intelligent wearables with acoustic sensing
职业:利用具有声学传感功能的智能可穿戴设备来感知和理解日常生活中细粒度的身体姿势
- 批准号:
2239569 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant