RAPID: Visual Analytics Approach to Real-Time Tracking of COVID-19

RAPID:实时跟踪 COVID-19 的可视化分析方法

基本信息

  • 批准号:
    2027688
  • 负责人:
  • 金额:
    $ 18.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

COVID-19 data, related to infection rates, at-risk populations, mobility, and commute dynamics are rapidly becoming available from several sources. However, there is a lack of interactive visual decision-making environments integrated with data-driven tools to help public health and community leaders understand how various factors such as physical distancing and other mitigation strategies, impact the spread of disease, help flatten the curve, enabling economic recovery while minimizing public health risk due to reopening. This project will develop visual analytic tools for tracking COVID-19 and propose balanced intervention strategies for effective containment of the outbreak. The proposed visual analytics system integrates heterogeneous datasets and enables the application of relevant analytical models and data-engineering for decision support in a complex and evolving crisis. The objectives include the development of (1) forecasting models for recovery based on incidence, population vulnerabilities, mobility patterns, and mitigation activities, (2) social-media tools to understand public sentiment and risk perceptions, (3) visual interface for model-refinement & diagnosis through data engineering and visual analytics principles. The decision-making framework will offer new insights, close the gap between data and decisions, and is driven-by inputs from extensive partnerships & collaborations to improve reliability and usability. The data-driven tools will help improve decision makersí understanding of disease dynamics from multiple variables. Epidemiologists could potentially leverage these insights to create higher-fidelity models based on interventional factors and their effect on population behaviors. Local authorities could also utilize the models to make life-saving decisions while minimizing impact to the economy. The project will enable new public and private partnerships including the City of New Orleans, and Industry Advisory Board of NSF Center for Visual and Decision Informatics. The project will benefit graduate and undergraduate students through hands-on research experience with the development of analytical products. The project outcomes will include analytics dashboards, source code, models, and data collected from multiple sources. The dashboards, project descriptions, and a list of data sources along with their metadata will be made publicly available on www.vastream.net for a period of two years. The public facing portion of the portal for COVID-19 component will be moved to Amazon cloud in event of disruptions from outages, for the duration of the project. A new public repository will be created on GitHub, and the source code and publicly available datasets will be made available on this project repository.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
与感染率、高危人群、流动性和通勤动态相关的COVID-19数据正迅速从多个来源获得。然而,目前缺乏与数据驱动工具相结合的交互式可视化决策环境,以帮助公共卫生和社区领导人了解各种因素(如保持身体距离和其他缓解战略)如何影响疾病传播,帮助使曲线变平,实现经济复苏,同时最大限度地减少重新开放带来的公共卫生风险。该项目将开发用于跟踪COVID-19的可视化分析工具,并为有效遏制疫情提出平衡的干预策略。提出的可视化分析系统集成了异构数据集,并使相关分析模型和数据工程的应用能够在复杂和不断发展的危机中提供决策支持。目标包括开发(1)基于发生率、人口脆弱性、流动模式和减灾活动的恢复预测模型;(2)了解公众情绪和风险认知的社交媒体工具;(3)通过数据工程和可视化分析原则进行模型改进和诊断的可视化界面。该决策框架将提供新的见解,缩小数据和决策之间的差距,并由广泛的伙伴关系和协作的投入推动,以提高可靠性和可用性。数据驱动的工具将有助于改进决策makersí从多个变量了解疾病动态。流行病学家可能会利用这些见解,基于干预因素及其对人口行为的影响,创建更高保真度的模型。地方当局还可以利用这些模型做出挽救生命的决策,同时尽量减少对经济的影响。该项目将促成新的公共和私人合作伙伴关系,包括新奥尔良市和NSF视觉和决策信息学中心的行业咨询委员会。该项目将通过开发分析产品的实践研究经验使研究生和本科生受益。项目结果将包括分析仪表板、源代码、模型和从多个来源收集的数据。仪表板、项目描述和数据源列表及其元数据将在www.vastream.net上公开,为期两年。COVID-19组件门户的面向公众部分将在项目期间因中断而中断时转移到亚马逊云。一个新的公共存储库将在GitHub上创建,源代码和公开可用的数据集将在这个项目存储库上提供。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Raju Gottumukkala其他文献

ENDOSCOPIC SUBMUCOSAL DISSECTION CAN BE SUCCESSFULLY TAUGHT IN ADVANCED ENDOSCOPY FELLOWSHIP TRAINING: OUTCOMES 4 YEARS AFTER COMPLETION OF A US-BASED TRAINING PROGRAM
在内镜黏膜下剥离术可以在高级内镜进修培训中成功教授:基于美国的培训项目完成后的 4 年结果
  • DOI:
    10.1016/j.gie.2023.04.297
  • 发表时间:
    2023-06-01
  • 期刊:
  • 影响因子:
    7.500
  • 作者:
    Phillip Ge;Raju Gottumukkala;George Chang;John Saltzman;Christopher Thompson;Hiroyuki Aihara
  • 通讯作者:
    Hiroyuki Aihara
ASSESSING THE QUALITY OF THE HOUSTON COMMUNITY COLLEGE (HCC) ENDOSCOPY (ENDO) TECH TRAINING PROGRAM: INSIGHTS FROM THE ASGE ENDO TECH TEST
  • DOI:
    10.1016/j.gie.2024.04.1195
  • 发表时间:
    2024-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Raju Gottumukkala;Kalpesh Patel;Sanjivini Suresh;Shou Tang;Selvi Thirumurthi;Harry Aslanian;Lisa Cassani;Laura Romero;Rajasekhara Mummadi;Sunil Dacha;Amandeep Shergill;Sushovan Guha;Katherine Alvarez;Melissa Bruton;Jean Verdeyen;Joanne Rach;Ed Dellert;Karen Woods
  • 通讯作者:
    Karen Woods
ASSESSING THE QUALITY OF THE HOUSTON COMMUNITY COLLEGE (HCC) ENDOSCOPY (ENDO) TECH TRAINING PROGRAM: INSIGHTS FROM THE ASGE ENDO TECH TEST
  • DOI:
    10.1016/j.gie.2024.04.1329
  • 发表时间:
    2024-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Raju Gottumukkala;Kalpesh Patel;Sanjivini Suresh;Shou Tang;Selvi Thirumurthi;Harry Aslanian;Lisa Cassani;Laura Romero;Rajasekhara Mummadi;Sunil Dacha;Amandeep Shergill;Sushovan Guha;Katherine Alvarez;Melissa Bruton;Jean Verdeyen;Joanne Rach;Ed Dellert;Karen Woods
  • 通讯作者:
    Karen Woods
OUTCOMES OF ENDOSCOPIC FULL THICKNESS RESECTION FOR FORMAL TUMOR STAGING AMONG INCOMPLETELY RESECTED MALIGNANT COLORECTAL LESIONS: A US ACADEMIC CANCER CENTER EXPERIENCE
内镜全层切除术在不完全切除的恶性结直肠病变中进行正式肿瘤分期的结果:美国学术癌症中心的经验
  • DOI:
    10.1016/j.gie.2023.04.1268
  • 发表时间:
    2023-06-01
  • 期刊:
  • 影响因子:
    7.500
  • 作者:
    Emmanuel Coronel;Matthew Tillman;Fredy Nehme;Raju Gottumukkala;Deanndra Casanova;Brian Bednarski;Tsuyoshi Konishi;Craig Messick;Oliver Peacock;John Skibber;Abhineet Uppal;Y. Nancy You;George Chang;Phillip Ge
  • 通讯作者:
    Phillip Ge
ASSESSING THE QUALITY OF THE HOUSTON COMMUNITY COLLEGE (HCC) ENDOSCOPY (ENDO) TECH TRAINING PROGRAM: INSIGHTS FROM THE ASGE ENDO TECH TEST
  • DOI:
    10.1016/j.gie.2024.04.999
  • 发表时间:
    2024-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Raju Gottumukkala;Kalpesh Patel;Sanjivini Suresh;Shou Tang;Selvi Thirumurthi;Harry Aslanian;Lisa Cassani;Laura Romero;Rajasekhara Mummadi;Sunil Dacha;Amandeep Shergill;Sushovan Guha;Katherine Alvarez;Melissa Bruton;Jean Verdeyen;Joanne Rach;Ed Dellert;Karen Woods
  • 通讯作者:
    Karen Woods

Raju Gottumukkala的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Raju Gottumukkala', 18)}}的其他基金

Supporting US-Based Students to Participate in the 2017 IEEE International Conference on Data Mining (ICDM 2017)
支持美国学生参加2017年IEEE数据挖掘国际会议(ICDM 2017)
  • 批准号:
    1758807
  • 财政年份:
    2017
  • 资助金额:
    $ 18.75万
  • 项目类别:
    Standard Grant
MRI: Development: A Distributed Visual Analytics Sandbox for High Volume Data Streams
MRI:开发:用于大容量数据流的分布式可视化分析沙箱
  • 批准号:
    1429526
  • 财政年份:
    2014
  • 资助金额:
    $ 18.75万
  • 项目类别:
    Standard Grant
EAGER: US IGNITE: A Virtual Crisis Information Sharing and Situational Awareness Platform for Collaborative Disaster Response
EAGER:US IGNITE:用于协作灾难响应的虚拟危机信息共享和态势感知平台
  • 批准号:
    1451916
  • 财政年份:
    2014
  • 资助金额:
    $ 18.75万
  • 项目类别:
    Standard Grant

相似国自然基金

基于多幅图象的Visual Hull重构及表面属性建模算法研究
  • 批准号:
    60373031
  • 批准年份:
    2003
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Promoting Metacognition in Visual Analytics
职业:促进视觉分析中的元认知
  • 批准号:
    2340539
  • 财政年份:
    2024
  • 资助金额:
    $ 18.75万
  • 项目类别:
    Continuing Grant
Cloud-Based Machine Learning and Biomarker Visual Analytics for Salivary Proteomics
基于云的机器学习和唾液蛋白质组生物标志物可视化分析
  • 批准号:
    10827649
  • 财政年份:
    2023
  • 资助金额:
    $ 18.75万
  • 项目类别:
Visual Analytics for Exploration and Hypothesis Generation Using Highly MultiplexedSpatial Data of Tissues and Tumors
使用组织和肿瘤的高度多重空间数据进行探索和假设生成的可视化分析
  • 批准号:
    10743329
  • 财政年份:
    2023
  • 资助金额:
    $ 18.75万
  • 项目类别:
EFRI BRAID: Neuroscience Inspired Visual Analytics
EFRI BRAID:神经科学启发的视觉分析
  • 批准号:
    2318101
  • 财政年份:
    2023
  • 资助金额:
    $ 18.75万
  • 项目类别:
    Standard Grant
Guided Analytics for the Visual Exploration of Higher Dimensional Data
高维数据可视化探索的引导分析
  • 批准号:
    RGPIN-2022-03894
  • 财政年份:
    2022
  • 资助金额:
    $ 18.75万
  • 项目类别:
    Discovery Grants Program - Individual
Visual analytics for time-dependent data
时间相关数据的可视化分析
  • 批准号:
    RGPIN-2018-05508
  • 财政年份:
    2022
  • 资助金额:
    $ 18.75万
  • 项目类别:
    Discovery Grants Program - Individual
Using data augmentation, active learning, and visual analytics for learning with limited examples on mobility data sets
使用数据增强、主动学习和可视化分析,通过移动数据集的有限示例进行学习
  • 批准号:
    DGECR-2022-00386
  • 财政年份:
    2022
  • 资助金额:
    $ 18.75万
  • 项目类别:
    Discovery Launch Supplement
Immersive Visual Analytics for Reservoir Characterization and Analysis
用于油藏表征和分析的沉浸式可视化分析
  • 批准号:
    534866-2019
  • 财政年份:
    2022
  • 资助金额:
    $ 18.75万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Visual Analytics
视觉分析
  • 批准号:
    CRC-2017-00339
  • 财政年份:
    2022
  • 资助金额:
    $ 18.75万
  • 项目类别:
    Canada Research Chairs
Studying Visual Analytics Support for Interactive Information Retrieval within Complex Search Settings
研究复杂搜索设置中交互式信息检索的视觉分析支持
  • 批准号:
    RGPIN-2017-06446
  • 财政年份:
    2022
  • 资助金额:
    $ 18.75万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了