RAPID: ENSURING INTEGRITY OF COVID-19 DATA AND NEWS ACROSS REGIONS
RAPID:确保跨地区的 COVID-19 数据和新闻的完整性
基本信息
- 批准号:2027750
- 负责人:
- 金额:$ 19.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Large amounts of epidemiological data are being generated and collected from a variety of sources to understand the impact and propagation of COVID-19. Similarly, huge amounts of news articles are generated and disseminated about the pandemic to keep the population informed. The appropriateness of the actions taken by individuals, corporations, and governments are often based on the quality of data and news. Thus, ensuring the quality of data and news is important. However, malicious actors can alter the attributes of data records, insert spurious records, or suppress records causing any analysis to be inadequate and misinformation to be propagated. This project addresses the critical problem of defining and identifying spurious data and news concerning COVID-19, and tracking the source of misinformation. The project novelty lies in the development of an approach and associated toolset that adapts and combines Machine Learning technologies to detect spurious data and misinformation and presents the results in a manner that is easy for end users to understand and interpret. The approach detects discrepancies in COVID-19 data and traces the flagged discrepancies back to the data sources. The results obtained from the news sources and those obtained from the medical data analysis are compared to determine correlations between the quality of news and the degree and type of data manipulation performed at any region. The project’s impacts are on significantly enhancing the ability to perform accurate scientific analysis, and detecting and explaining news manipulation with respect to COVID-19. The scientific principles developed in the project are expected to be useful outside the medical domain. The PI and the students identified for this project are minorities. The project will be carried out in the Computer Science Department at Colorado State University which is a BRAID affiliate.COVID-19 data discrepancies are related to (1) single records, where some field is modified, (2) sequence of records over time forming a temporal dimension, where spurious records have been inserted or records have been suppressed, and (3) sequences of records across regions forming a spatial dimension, where there is a pattern of manipulation or information disclosure across regions. The approach determines the appropriate combination of autoencoders, Long Short-Term Memory (LSTM), Temporal Convolution Network (TCNs), and Convolution Neural Networks (CNNs) that can work with data obtained from medical sources and news containing both spatial and temporal dimensions. The tools help the investigators’ collaborators at the University of Colorado Anschutz Medical Center and Center for Disease Control and Prevention to perform data integrity checking of medical records and to provide explanations of integrity violations. The tools also handle different types of data and news alterations pertaining to COVID-19.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
我们正从各种来源生成和收集大量流行病学数据,以了解COVID-19的影响和传播。同样,还制作和传播了大量关于这一流行病的新闻文章,以使民众了解情况。个人、公司和政府采取的行动是否恰当,往往取决于数据和新闻的质量。因此,确保数据和新闻的质量至关重要。然而,恶意行为者可以改变数据记录的属性、插入虚假记录或抑制记录,从而导致任何分析不充分并传播错误信息。该项目解决了定义和识别有关COVID-19的虚假数据和新闻以及追踪错误信息来源的关键问题。该项目的新奇之处在于开发了一种方法和相关工具集,该方法和工具集适应并结合了机器学习技术,以检测虚假数据和错误信息,并以最终用户易于理解和解释的方式呈现结果。该方法检测COVID-19数据中的差异,并将标记的差异追溯到数据源。将从新闻源获得的结果与从医疗数据分析获得的结果进行比较,以确定新闻质量与在任何区域执行的数据操纵的程度和类型之间的相关性。该项目的影响是显著提高进行准确科学分析的能力,以及发现和解释与COVID-19有关的新闻操纵。在该项目中开发的科学原理预计将在医学领域之外使用。为该项目确定的PI和学生是少数民族。该项目将在BRAID附属机构科罗拉多州立大学的计算机科学系进行。COVID-19数据差异与(1)单个记录有关,其中某些字段被修改,(2)随时间推移形成时间维度的记录序列,其中虚假记录被插入或记录被抑制,以及(3)跨区域的记录序列形成空间维度,存在跨地区操纵或信息披露模式的情况。该方法确定了自动编码器、长短期记忆(LSTM)、时间卷积网络(TCN)和卷积神经网络(CNN)的适当组合,这些组合可以处理从医疗来源和包含空间和时间维度的新闻中获得的数据。这些工具帮助科罗拉多大学安舒茨医学中心和疾病控制和预防中心的研究人员合作者对医疗记录进行数据完整性检查,并提供违反完整性的解释。该工具还处理与COVID-19相关的不同类型的数据和新闻变更。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Seeing Should Probably not be Believing: The Role of Deceptive Support in COVID-19 Misinformation on Twitter
眼见为实:欺骗性支持在 Twitter 上的 COVID-19 错误信息中所扮演的角色
- DOI:10.1145/3546914
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Zuo, Chaoyuan;Banerjee, Ritwik;Shirazi, Hossein;Chaleshtori, Fateme Hashemi;Ray, Indrakshi
- 通讯作者:Ray, Indrakshi
A Methodology for Energy Usage Prediction in Long-Lasting Abnormal Events
- DOI:10.1109/cogmi56440.2022.00023
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Gabriele Maurina;Hajar Homayouni;Sudipto Ghosh;I. Ray;G. Duggan
- 通讯作者:Gabriele Maurina;Hajar Homayouni;Sudipto Ghosh;I. Ray;G. Duggan
Diagnosis, Prevention, and Cure for Misinformation
错误信息的诊断、预防和治疗
- DOI:10.1109/cogmi52975.2021.00028
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Banerjee, Ritwik;Ray, Indrakshi
- 通讯作者:Ray, Indrakshi
Detecting Temporal Dependencies in Data
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
On the Performance of Isolation Forest and Multi Layer Perceptron for Anomaly Detection in Industrial Control Systems Networks
- DOI:10.1109/iotsms53705.2021.9704986
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Saja Alqurashi;H. Shirazi;I. Ray
- 通讯作者:Saja Alqurashi;H. Shirazi;I. Ray
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Indrakshi Ray其他文献
Independent Key Distribution Protocols for Broadcast Authentication
用于广播认证的独立密钥分发协议
- DOI:
10.1145/3205977.3205985 - 发表时间:
2018-06 - 期刊:
- 影响因子:0
- 作者:
Bruhadeshawr Bezawada;S;eep Kulkarni;Indrajit Ray;Indrakshi Ray;Rui Li - 通讯作者:
Rui Li
AN APPROACH FOR TESTING THE EXTRACT-TRANSFORM-LOAD PROCESS IN DATA WAREHOUSE SYSTEMS Submitted
一种测试数据仓库系统中提取-转换-加载过程的方法已提交
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Hajar Homayouni;Sudipto Ghosh;Indrakshi Ray;J. Bieman;Leo R. Vijayasarathy - 通讯作者:
Leo R. Vijayasarathy
Correctness and security analysis of the protection in transit (PIT) protocol
传输中保护(PIT)协议的正确性与安全性分析
- DOI:
10.1016/j.jss.2025.112501 - 发表时间:
2025-12-01 - 期刊:
- 影响因子:4.100
- 作者:
Rakesh Podder;Mahmoud Abdelgawad;Indrakshi Ray;Indrajit Ray;Madhan Santharam;Stefano Righi - 通讯作者:
Stefano Righi
Editors’ message for the special issue on security
- DOI:
10.1007/s00799-004-0087-7 - 发表时间:
2004-11-01 - 期刊:
- 影响因子:1.700
- 作者:
Vijayalakshmi Atluri;Indrakshi Ray - 通讯作者:
Indrakshi Ray
Real time stochastic scheduling in broadcast systems with decentralized data storage
- DOI:
10.1007/s11241-010-9102-9 - 发表时间:
2010-07-15 - 期刊:
- 影响因子:1.300
- 作者:
Rinku Dewri;Indrakshi Ray;Indrajit Ray;Darrell Whitley - 通讯作者:
Darrell Whitley
Indrakshi Ray的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Indrakshi Ray', 18)}}的其他基金
Collaborative Research: EAGER: MedAn: A Framework for Investigating Live Medical Data against Privacy Laws
合作研究:EAGER:MedAn:根据隐私法调查实时医疗数据的框架
- 批准号:
2335687 - 财政年份:2023
- 资助金额:
$ 19.97万 - 项目类别:
Continuing Grant
IUCRC Phase II Colorado State University: Center for Cybersecurity Analytics and Automation CCAA
IUCRC 第二阶段科罗拉多州立大学:网络安全分析和自动化中心 CCAA
- 批准号:
1822118 - 财政年份:2019
- 资助金额:
$ 19.97万 - 项目类别:
Continuing Grant
Colorado State University Site Addition: I/UCRC Center for Configuration Analytics and Automation
科罗拉多州立大学站点新增:I/UCRC 配置分析和自动化中心
- 批准号:
1650573 - 财政年份:2017
- 资助金额:
$ 19.97万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: Collaborative: GOALI: Detecting and Reconstructing Network Anomalies and Intrusions in Heavy Duty Vehicles
SaTC:核心:小型:协作:GOALI:检测和重建重型车辆中的网络异常和入侵
- 批准号:
1715458 - 财政年份:2017
- 资助金额:
$ 19.97万 - 项目类别:
Standard Grant
EAGER: Collaborative: Toward a Test Bed for Heavy Vehicle Cyber Security Experimentation
EAGER:协作:迈向重型车辆网络安全实验的试验台
- 批准号:
1619641 - 财政年份:2016
- 资助金额:
$ 19.97万 - 项目类别:
Standard Grant
Planning Grant: I/UCRC for Joining Center for Configuration Analytics and Automation
规划补助金:I/UCRC 用于加入配置分析和自动化中心
- 批准号:
1540041 - 财政年份:2015
- 资助金额:
$ 19.97万 - 项目类别:
Standard Grant
SHF: Small: Scenario-Based Validation of Design Models
SHF:小型:基于场景的设计模型验证
- 批准号:
1018711 - 财政年份:2010
- 资助金额:
$ 19.97万 - 项目类别:
Continuing Grant
相似海外基金
Ensuring Decommissioning Safety, Integrity and Verification through Advanced Ultrasonic Sensor-Enabled Cutting
通过先进的超声波传感器切割确保退役安全、完整性和验证
- 批准号:
2744604 - 财政年份:2022
- 资助金额:
$ 19.97万 - 项目类别:
Studentship
SBIR Phase I: Engaging citizens in environmental research to impact science literacy and STEM careers while ensuring data integrity
SBIR 第一阶段:让公民参与环境研究,以影响科学素养和 STEM 职业,同时确保数据完整性
- 批准号:
2151476 - 财政年份:2022
- 资助金额:
$ 19.97万 - 项目类别:
Standard Grant
Study of technique for ensuring long-term integrity of rock mass and and environmental protection by mineral precipitation
矿物沉淀保证岩体长期完整性及环境保护技术研究
- 批准号:
19K04596 - 财政年份:2019
- 资助金额:
$ 19.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CICI: Secure Data Architecture: Ensuring Data Integrity at the Beginning of the Scientific Workflow; A Mini-ScienceDMZ for Instruments
CICI:安全数据架构:在科学工作流程开始时确保数据完整性;
- 批准号:
1547099 - 财政年份:2016
- 资助金额:
$ 19.97万 - 项目类别:
Standard Grant
PARNASSUS: Ensuring integrity, preserving significance: value based flood resilience for protection of cultural heritage from climate change impact
帕纳萨斯:确保完整性,保留意义:基于价值的防洪能力,保护文化遗产免受气候变化的影响
- 批准号:
AH/H032525/2 - 财政年份:2012
- 资助金额:
$ 19.97万 - 项目类别:
Research Grant
PARNASSUS: Ensuring integrity, preserving significance: value based flood resilience for protection of cultural heritage from climate change impact
帕纳萨斯:确保完整性,保留意义:基于价值的防洪能力,保护文化遗产免受气候变化的影响
- 批准号:
AH/H032525/1 - 财政年份:2010
- 资助金额:
$ 19.97万 - 项目类别:
Research Grant
III: Small: Ensuring Integrity and Authenticity of Outsourced Databases
III:小:确保外包数据库的完整性和真实性
- 批准号:
1017990 - 财政年份:2010
- 资助金额:
$ 19.97万 - 项目类别:
Standard Grant
CT-ISG/RUI: Ensuring Computation Integrity in Distributed Volunteer Computing Platforms
CT-ISG/RUI:确保分布式志愿计算平台的计算完整性
- 批准号:
0524239 - 财政年份:2005
- 资助金额:
$ 19.97万 - 项目类别:
Standard Grant
ITR: Bandwidth Efficient Techniques for Ensuring Mobile Code Integrity and Authentication
ITR:确保移动代码完整性和身份验证的带宽高效技术
- 批准号:
0219559 - 财政年份:2002
- 资助金额:
$ 19.97万 - 项目类别:
Standard Grant
CAREER: Mechanisms for Ensuring the Integrity of Distributed Object Systems
职业:确保分布式对象系统完整性的机制
- 批准号:
9701973 - 财政年份:1997
- 资助金额:
$ 19.97万 - 项目类别:
Continuing Grant














{{item.name}}会员




