RAPID: Dynamical Modeling of COVID-19
RAPID:COVID-19 的动态建模
基本信息
- 批准号:2027786
- 负责人:
- 金额:$ 19.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will develop a set of mathematical models of the spread of SARS-CoV-2, the cause of COVID-19. The 2019-2020 global coronavirus pandemic is ongoing. Much remains unknown about the epidemic trajectory and potential paths to containment. The researchers will map the spatial spread of the virus, estimate key parameters related to transmission, compile clinical and epidemiological information, and assess the effectiveness of public health interventions on containment. In doing so the work will develop concepts and mathematical theory essential for the understanding of the spread of COVID-19 with possible applications to other emerging infectious diseases. The proposed work will provide estimates of key epidemiological parameters necessary for understanding the spread of SARS-CoV-2 as a public health emergency, in particular, and the future control of other emerging zoonosis. This research will provide timely information on the COVID-19 epidemic immediately useful to the operations of the CDC, as well as contribute to the training of two graduate students and a postdoc.The specific aims of this project are, first, to contextualize COVID-19 in comparison to previous outbreaks of infectious respiratory diseases and estimate infectiousness, incubation period, transmissibility, case severity, and case fatality rate. Second, it will estimate and visualize epidemiological parameters for COVID-19, including: the epidemic curve, the basic reproduction number (R0), the case detection rate, the incubation period, transmissibility, and the lag between symptom onset and isolation. Third, it will develop and parameterize a U.S. spatial model to help determine the optimal allocation of resources such as personnel, funding, supplies at multiple spatial scales such as states, cities, and hospitals. Fourth, it will fit stochastic dynamical models to case notification data to draw conclusions about the effectiveness of interventions such as lockdowns, curfews, and school closures. These aims will be accomplished by leveraging public, crowd-sourced, and government data with stochastic dynamical models for transmission and spatial spread.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将开发一套关于新冠肺炎起因--SARS-CoV-2传播的数学模型。2019-2020年全球冠状病毒大流行正在进行中。关于疫情的传播轨迹和潜在的遏制途径,仍有许多未知之处。研究人员将绘制病毒的空间传播地图,估计与传播相关的关键参数,汇编临床和流行病学信息,并评估公共卫生干预措施对遏制措施的有效性。在这样做的过程中,这项工作将发展出对理解新冠肺炎的传播至关重要的概念和数学理论,并可能应用于其他新出现的传染病。拟议的工作将提供必要的关键流行病学参数的估计,以了解SARS-CoV-2作为公共卫生紧急情况的传播,特别是未来对其他新出现的人畜共患病的控制。这项研究将提供有关新冠肺炎疫情的及时信息,对疾控中心的运作立即有用,并有助于两名研究生和一名博士后的培训。该项目的具体目标是,首先,将新冠肺炎与以前爆发的传染性呼吸道疾病进行比较,并估计传染性、潜伏期、传播性、病例严重性和病死率。其次,它将估计和可视化新冠肺炎的流行病学参数,包括:疫情曲线、基本繁殖数(R0)、病例发现率、潜伏期、传播力以及症状出现和隔离之间的滞后。第三,它将开发一个美国空间模型并将其参数化,以帮助确定人员、资金、物资等资源在州、城市和医院等多个空间尺度上的最佳配置。第四,它将把随机动态模型与病例通报数据相匹配,以得出关于封锁、宵禁和学校关闭等干预措施的有效性的结论。这些目标将通过利用公共的、众包的和政府的数据以及用于传输和空间传播的随机动力学模型来实现。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States.
- DOI:10.1073/pnas.2113561119
- 发表时间:2022-04-12
- 期刊:
- 影响因子:11.1
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Drake其他文献
F33. EXPLORING DIFFERENTIAL EXPRESSION OF NEURONAL PIRNAS IN MAJOR DEPRESSION SUBJECTS IN A LARGE POST MORTEM BRAIN SAMPLE
F33. 探索大型死后大脑样本中重度抑郁症受试者神经元 PIRNAs 的差异表达
- DOI:
10.1016/j.euroneuro.2024.08.444 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:6.700
- 作者:
Z. Nathan Taylor;John Drake;Allie Denham;Joo Heon Shin;Thomas Hyde;Vladimir Vladimirov - 通讯作者:
Vladimir Vladimirov
T30. LEVERAGING WHOLE GENOME SEQUENCING OF FAMILIES TO DISCOVER RARE VARIANTS ASSOCIATED WITH BIPOLAR DISORDER
T30. 利用家庭全基因组测序发现与双相情感障碍相关的罕见变异
- DOI:
10.1016/j.euroneuro.2023.08.316 - 发表时间:
2023-10-01 - 期刊:
- 影响因子:6.700
- 作者:
Hamed Kazemi;John Drake;Tim Bigdeli;Silviu Bacanu;Kelly Benke;Brion Maher;Michele Pato;James Knowles;Steve McCarroll;Celia Carvalho;Helena Medeiros;Rute Ferreira;Vladimir Vladimirov;Ayman Fanous - 通讯作者:
Ayman Fanous
Egress Online: Towards Leveraging Massively, Multiplayer Environments for Evacuation Studies
Egress Online:利用大规模、多人环境进行疏散研究
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Aline Normoyle;John Drake;A. Safonova - 通讯作者:
A. Safonova
Correction to: Bone metastases from chondroblastoma: a rare pattern of metastatic disease in an adult
- DOI:
10.1007/s00256-023-04520-3 - 发表时间:
2023-11-22 - 期刊:
- 影响因子:2.200
- 作者:
Jennifer Murphy;Anish Patel;Simon Hughes;Petr Rehousek;John Drake;Vaiyapuri Sumathi;Rajesh Botchu;A. Mark Davies - 通讯作者:
A. Mark Davies
F40. MAXIMIZING PERFORMANCE AND ELUCIDATING LIMITATIONS OF GENE EXPRESSION IMPUTATION IN THE ANTERIOR CINGULATE CORTEX
F40. 最大化前扣带回皮质中基因表达插补的性能并阐明其局限性
- DOI:
10.1016/j.euroneuro.2024.08.451 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:6.700
- 作者:
John Drake;Zachary N. Taylor;Allie Denham;Silviu-Alin Bacanu;Joo Heon Shin;Thomas M. Hyde;Vladimir Vladimirov - 通讯作者:
Vladimir Vladimirov
John Drake的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Drake', 18)}}的其他基金
PIPP Phase I: Heterogeneous Model Integration for Infectious Disease Intelligence
PIPP 第一阶段:传染病情报的异构模型集成
- 批准号:
2200158 - 财政年份:2022
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
RAPID Collaborative proposal: Spatial dynamics of COVID-19
RAPID 合作提案:COVID-19 的空间动态
- 批准号:
2028136 - 财政年份:2020
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
Meeting: Special Symposium: Population Biology of Vector-borne Diseases, University of Georgia, February 24, 2018
会议:特别研讨会:媒介传播疾病的群体生物学,佐治亚大学,2018 年 2 月 24 日
- 批准号:
1820544 - 财政年份:2018
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
REU Site: Population Biology of Infectious Diseases
REU 网站:传染病群体生物学
- 批准号:
1659683 - 财政年份:2017
- 资助金额:
$ 19.99万 - 项目类别:
Continuing Grant
REU Site: Population Biology of Infectious Diseases
REU 网站:传染病群体生物学
- 批准号:
1156707 - 财政年份:2012
- 资助金额:
$ 19.99万 - 项目类别:
Continuing Grant
Collaborative Research--Microscopic Islands: Modeling the Theory of Island Biogeography for Aquatic Pathogens Colonizing Marine Aggregates
合作研究--微观岛屿:为海洋聚集体定殖的水生病原体的岛屿生物地理学理论建模
- 批准号:
0914347 - 财政年份:2009
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
Emerging Urban Vector-Borne Disease: West Nile Virus in New York City (1999-2006)
新兴城市媒介传播疾病:纽约市的西尼罗河病毒(1999-2006)
- 批准号:
0723601 - 财政年份:2007
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
Development of Integrated Materials For Laboratory Studies Of New England Petrology
新英格兰岩石学实验室研究综合材料的开发
- 批准号:
7900043 - 财政年份:1979
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332469 - 财政年份:2024
- 资助金额:
$ 19.99万 - 项目类别:
Continuing Grant
Making Upper Division Mathematics Courses More Relevant for Future High School Teachers: The Case of Inquiry-Oriented Dynamical Systems and Modeling
使高年级数学课程与未来高中教师更相关:以探究为导向的动力系统和建模案例
- 批准号:
2337047 - 财政年份:2024
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332468 - 财政年份:2024
- 资助金额:
$ 19.99万 - 项目类别:
Continuing Grant
CAREER: Frailty Assessment for Older Adults with Walking Disabilities using Dynamical Modeling of Cardiac, Brain, and Motor Systems in Response to Provocative Testing
职业:使用心脏、大脑和运动系统的动态模型来响应激发测试,对患有步行障碍的老年人进行虚弱评估
- 批准号:
2402238 - 财政年份:2023
- 资助金额:
$ 19.99万 - 项目类别:
Continuing Grant
CAREER: Frailty Assessment for Older Adults with Walking Disabilities using Dynamical Modeling of Cardiac, Brain, and Motor Systems in Response to Provocative Testing
职业:使用心脏、大脑和运动系统的动态模型来响应激发测试,对患有步行障碍的老年人进行虚弱评估
- 批准号:
2236689 - 财政年份:2023
- 资助金额:
$ 19.99万 - 项目类别:
Continuing Grant
Developing novel neural network tools for accurate and interpretable dynamical modeling of neural circuits
开发新型神经网络工具,用于准确且可解释的神经回路动态建模
- 批准号:
10752956 - 财政年份:2023
- 资助金额:
$ 19.99万 - 项目类别:
Bayesian Dynamical Modeling of Microbial Communities
微生物群落的贝叶斯动力学建模
- 批准号:
10350044 - 财政年份:2022
- 资助金额:
$ 19.99万 - 项目类别:
Bayesian Dynamical Modeling of Microbial Communities
微生物群落的贝叶斯动力学建模
- 批准号:
10611301 - 财政年份:2022
- 资助金额:
$ 19.99万 - 项目类别:
Dynamical and chemical modeling of low-mass star-forming cores
低质量恒星形成核心的动力学和化学建模
- 批准号:
2206516 - 财政年份:2022
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
Data-driven statistical dynamical modeling: Shortage of training data and high- dimensionality
数据驱动的统计动态建模:训练数据短缺和高维
- 批准号:
2207328 - 财政年份:2022
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant