EAGER: An Experimental Exploration for Spin-Based Neuromorphic Computing
EAGER:基于自旋的神经形态计算的实验探索
基本信息
- 批准号:2028213
- 负责人:
- 金额:$ 10.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent experiments in spintronics have revealed the opportunity of mimicking brain-like functionalities in a single device structure that can be operated at very low terminal voltages. These non-volatile memory technologies can be arranged in crossbar array fashion to realize In-Memory Computing in neuromorphic systems by application of Kirchoff's law. Spintronics enabled neuromorphic computing has the potential of enabling a significant increase in efficiency of machine learning hardware. However, experimental investigations are still in the infancy stage. The goal of this project is to experimentally demonstrate the emulation of the computational primitives by mimicking biological brain in the underlying hardware substrate exploiting the functional properties of Spin-Orbit Coupling. The EAGER program is focused to prove the feasibility of experimentally demonstrating spin-based neuromorphic devices that has the potential to enable significant improvements in performance and energy consumption as compared to Complementary Metal Oxide Semiconductor technologies. If successful, the research can lead to the development of computing paradigms that inherently exploits nanomagnetic devices as a mechanism to build brain-like hardware. Graduate students and undergraduates from Penn State's Schreyer Honors College will be engaged in the research activities of this project. The PI plans to integrate the results from this project into the Electrical Engineering departmental K-12 summer camp.Prior experimental efforts have mainly focused on single device characterizations without addressing the issues of scalability and system-level demonstrations. This proposal aims to bridge that gap through the following research thrusts: (i) Fabrication and characterization of heavy-metal based Hall-bar structures at room temperatures to experimentally demonstrate the feasibility of various neural and synaptic functionalities including leaky-spiking neuron, stochastic-spiking neuron, spike-timing dependent plasticity, and short-term plasticity. The device structure will consist of a ferromagnet (CoFe/CoFeB) – heavy metal (Ta/Pt) Hall-bar where current flowing through the device will be used to switch the magnet and the final state will be detected using anomalous Hall effect. (ii) The device will be characterized for performance and non-idealities like magnetization pinning, stochastic programming, thermal noise induced switching, and programming resolution. (iii) Arrays of such devices will be fabricated to investigate the impact of device-to-device and cycle-to-cycle variations and demonstrate a prototype computing system. Efforts will also be placed to develop realistic device models by incorporating device constraints and non-idealities that can be used to predict performance of large-scale systems. Successful completion offers the basis for transformative improvements in the efficiency of machine learning platforms having the capability of performing real-time decision-making in autonomous systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近的自旋电子学实验揭示了在一个可以在非常低的终端电压下工作的单一设备结构中模拟类脑功能的机会。这些非易失性存储技术可以采用交叉排列的方式,应用基尔霍夫定律实现神经形态系统的内存计算。自旋电子学支持的神经形态计算具有显著提高机器学习硬件效率的潜力。然而,实验研究仍处于起步阶段。该项目的目标是通过实验证明,利用自旋-轨道耦合的功能特性,通过在底层硬件基质中模拟生物大脑来模拟计算原语。EAGER项目的重点是通过实验证明基于自旋的神经形态器件的可行性,与互补金属氧化物半导体技术相比,该器件在性能和能耗方面具有显著改善的潜力。如果成功的话,这项研究可以导致计算范式的发展,这些范式固有地利用纳米磁性设备作为构建类脑硬件的机制。宾夕法尼亚州立大学Schreyer荣誉学院的研究生和本科生将参与该项目的研究活动。PI计划将这个项目的成果整合到电气工程系K-12夏令营中。先前的实验工作主要集中在单个器件的特性上,而没有解决可伸缩性和系统级演示的问题。本提案旨在通过以下研究重点来弥补这一差距:(i)在室温下制造和表征重金属霍尔杆结构,以实验证明各种神经和突触功能的可行性,包括泄漏峰值神经元,随机峰值神经元,峰值时间依赖的可塑性和短期可塑性。该器件结构将由铁磁体(CoFe/CoFeB) -重金属(Ta/Pt)霍尔棒组成,其中流过器件的电流将用于切换磁体,并使用异常霍尔效应检测最终状态。(ii)该器件将具有性能和非理想特性,如磁化钉住、随机编程、热噪声诱导开关和编程分辨率。将制造这种装置的阵列,以调查设备对设备和周期对周期变化的影响,并展示一个原型计算系统。还将努力通过结合可用于预测大规模系统性能的设备约束和非理想性来开发现实的设备模型。成功完成为机器学习平台的效率提供了变革性改进的基础,这些平台具有在自主系统中执行实时决策的能力。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Leveraging Probabilistic Switching in Superparamagnets for Temporal Information Encoding in Neuromorphic Systems
- DOI:10.1109/tcad.2022.3233926
- 发表时间:2022-09
- 期刊:
- 影响因子:2.9
- 作者:Kezhou Yang;Dhuruva Priyan G M;Abhronil Sengupta
- 通讯作者:Kezhou Yang;Dhuruva Priyan G M;Abhronil Sengupta
Leveraging Voltage-Controlled Magnetic Anisotropy to Solve Sneak Path Issues in Crossbar Arrays
- DOI:10.1109/ted.2023.3246949
- 发表时间:2022-09
- 期刊:
- 影响因子:3.1
- 作者:Kezhou Yang;Abhronil Sengupta
- 通讯作者:Kezhou Yang;Abhronil Sengupta
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Abhronil Sengupta其他文献
EEG controlled remote robotic system from motor imagery classification
脑电图控制的运动想象分类远程机器人系统
- DOI:
10.1109/icccnt.2012.6395890 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
S. Bhattacharyya;Abhronil Sengupta;Tathagata Chakraborti;D. Banerjee;A. Khasnobish;A. Konar;D. Tibarewala;R. Janarthanan - 通讯作者:
R. Janarthanan
Toward a spintronic deep learning spiking neural processor
迈向自旋电子深度学习尖峰神经处理器
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Abhronil Sengupta;Bing Han;K. Roy - 通讯作者:
K. Roy
On the energy benefits of spiking deep neural networks: A case study
关于脉冲深度神经网络的能源效益:案例研究
- DOI:
10.1109/ijcnn.2016.7727303 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Bing Han;Abhronil Sengupta;K. Roy - 通讯作者:
K. Roy
Stochastic Spiking Neural Networks Enabled by Magnetic Tunnel Junctions: From Nontelegraphic to Telegraphic Switching Regimes
由磁隧道结实现的随机尖峰神经网络:从非电报到电报的切换机制
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
C. Liyanagedera;Abhronil Sengupta;Akhilesh R. Jaiswal;K. Roy - 通讯作者:
K. Roy
Prospects of efficient neural computing with arrays of magneto-metallic neurons and synapses
利用磁金属神经元和突触阵列进行高效神经计算的前景
- DOI:
10.1109/aspdac.2016.7427998 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Abhronil Sengupta;K. Yogendra;Deliang Fan;K. Roy - 通讯作者:
K. Roy
Abhronil Sengupta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Abhronil Sengupta', 18)}}的其他基金
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333881 - 财政年份:2024
- 资助金额:
$ 10.25万 - 项目类别:
Standard Grant
CAREER: Rethinking Spiking Neural Networks from a Dynamical System Perspective
职业:从动态系统的角度重新思考尖峰神经网络
- 批准号:
2337646 - 财政年份:2024
- 资助金额:
$ 10.25万 - 项目类别:
Continuing Grant
EAGER: Exploring the Self-Repair Role of Astrocytes in Neuromorphic Computing
EAGER:探索星形胶质细胞在神经形态计算中的自我修复作用
- 批准号:
2031632 - 财政年份:2020
- 资助金额:
$ 10.25万 - 项目类别:
Standard Grant
相似海外基金
Experimental and theoretical studies of trace species in Earth materials, from mantle geodynamics to environmental applications and mineral exploration
地球材料中痕量物质的实验和理论研究,从地幔地球动力学到环境应用和矿物勘探
- 批准号:
RGPIN-2018-04106 - 财政年份:2022
- 资助金额:
$ 10.25万 - 项目类别:
Discovery Grants Program - Individual
Experimental and theoretical studies of trace species in Earth materials, from mantle geodynamics to environmental applications and mineral exploration
地球材料中痕量物质的实验和理论研究,从地幔地球动力学到环境应用和矿物勘探
- 批准号:
RGPIN-2018-04106 - 财政年份:2021
- 资助金额:
$ 10.25万 - 项目类别:
Discovery Grants Program - Individual
Development of mesoscale experimental geophysical exploration technique and its application to learning for dynamics in deeper subsurface environment through controling it
中尺度实验地球物理勘探技术发展及其在深层地下环境动力学控制学习中的应用
- 批准号:
21H04750 - 财政年份:2021
- 资助金额:
$ 10.25万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
CDS&E: Systematic Exploration of the High Entropy Alloy Space through High-Dimensional Thermodynamic Modeling from High-Throughput Computations and Experimental Data
CDS
- 批准号:
2001411 - 财政年份:2020
- 资助金额:
$ 10.25万 - 项目类别:
Standard Grant
Experimental and theoretical studies of trace species in Earth materials, from mantle geodynamics to environmental applications and mineral exploration
地球材料中痕量物质的实验和理论研究,从地幔地球动力学到环境应用和矿物勘探
- 批准号:
RGPIN-2018-04106 - 财政年份:2020
- 资助金额:
$ 10.25万 - 项目类别:
Discovery Grants Program - Individual
Experimental and theoretical studies of trace species in Earth materials, from mantle geodynamics to environmental applications and mineral exploration
地球材料中痕量物质的实验和理论研究,从地幔地球动力学到环境应用和矿物勘探
- 批准号:
RGPIN-2018-04106 - 财政年份:2019
- 资助金额:
$ 10.25万 - 项目类别:
Discovery Grants Program - Individual
Experimental and theoretical studies of trace species in Earth materials, from mantle geodynamics to environmental applications and mineral exploration
地球材料中痕量物质的实验和理论研究,从地幔地球动力学到环境应用和矿物勘探
- 批准号:
RGPIN-2018-04106 - 财政年份:2018
- 资助金额:
$ 10.25万 - 项目类别:
Discovery Grants Program - Individual
Development of Information Design to Promote Exploration and Utilization of Drug Information and Basic Studies from Experimental Psychological Perspectives
发展信息设计促进实验心理学视角下药物信息与基础研究的探索与利用
- 批准号:
17K00712 - 财政年份:2017
- 资助金额:
$ 10.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Inductive learning and the evolution of social norms; Exploration of a new experimental paradigm
归纳学习和社会规范的演变;
- 批准号:
17H02621 - 财政年份:2017
- 资助金额:
$ 10.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Experimental exploration for topological antiferromagnets
拓扑反铁磁体的实验探索
- 批准号:
16H02209 - 财政年份:2016
- 资助金额:
$ 10.25万 - 项目类别:
Grant-in-Aid for Scientific Research (A)