High Endurance Phase-Change Devices for Electrically Reconfigurable Optical Systems
用于电可重构光学系统的高耐久性相变器件
基本信息
- 批准号:2028624
- 负责人:
- 金额:$ 38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Award Title:High-endurance phase-change devices for electrically reconfigurable optical systemsNon-Technical Abstract:Materials whose optical properties can be tuned electrically are essential to operations of many modern technologies that we rely on daily, for example, smartphone displays and fiber internet. For emerging applications in tunable optical components, high-speed computing, and advanced optical storage, a group of materials that can be reconfigured at the atomic level, known as “phase-change materials,” is particularly promising. When their atoms are arranged in either an ordered or disordered state, these materials exhibit a dramatic, stable, and reversible change in their optical properties, which could enable devices with very compact form-factor, low energy consumption and insensitivity to vibration. While many proof-of-concept optical devices have been demonstrated using phase-change materials, few can be controlled using electrical signals—a prerequisite for real world implementation. Additionally, these electrically controlled phase-change devices have shown poor endurance and switching cyclability, the cause of which is not well understood. The team proposes to address this challenge by first investigating the role of heat and mechanical expansion in the various layers comprising these devices using time-dependent optical and electrical measurements. Secondly, the team will use high resolution imaging techniques to study the role that migration of various types of atoms has on the reversibility of the phase-change material. Finally, the team will use these results to construct phase-change devices with improved reliability and explore the possibility of scaling them up to sizes needed for applications requiring larger tunable optical components. The team seeks to educate middle-/high-school students on topics related to novel materials in daily life from school districts with historically serving under-represented minorities, using a combination of interactive workshops and hands-on demos. This project also provides training for two graduate students in advanced device fabrication and characterization techniques, and hosts undergraduates from underrepresented groups during the summer months to broaden participation in STEM-related fields.Technical Abstract:Phase-change materials, such as Ge2Sb2Te5 and GeTe, are particularly promising for reconfigurable optical devices owing to their fast, dramatic, non-volatile, and reversible change in refractive index. Experimental demonstrations of reconfigurable smart windows, reflective displays, metasurfaces, and photonic devices for memory and computing have re-ignited interests in these materials. For phase-change devices with dimensions greater than the optical wavelength, an electro-thermal approach to switching is most promising, but limited prior work showed poor endurance and cyclability (1000 cycles or less) compared to the high endurances (greater than 10 million cycles) demonstrated for phase-change data storage. The team proposes that the endurance is limited by poorly matched thermal properties of materials within these devices, while the degrading optical contrast often observed is due to phase segregation and void formation in the phase-change layer. To validate this hypothesis, the project has three aims: (1) improve the lifetime of electro-thermal phase-change devices by properly matching the thermal expansion coefficients of the materials within the device layers; (2) reduce the cycling-induced degradation of optical contrast by reducing thermal gradients within the device and improving deposition conditions; and (3) identify the effects and limitations of scaling on phase-change optical devices. The proposed approach will overcome the limited cyclability of these electro-thermally switched phase-change devices by studying the thermal response of the device layers through complementary thermal-mechanical modelling, dynamic optoelectronic measurements, and advanced nano-characterization techniques. The insights gained by understanding and addressing the current limitations of electro-thermally controlled optical phase-change films are expected to be broadly applicable to such fields as tunable optical coatings, non-von Neumann computing, electrical-optical conversion, and reconfigurable photonic and RF systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
摘要:光学特性可电调谐的材料对于我们日常依赖的许多现代技术的运行至关重要,例如智能手机显示器和光纤互联网。对于可调谐光学元件、高速计算和高级光存储等新兴应用,一组可以在原子水平上重新配置的材料(称为“相变材料”)特别有前途。当它们的原子以有序或无序状态排列时,这些材料的光学性质会发生戏剧性的、稳定的和可逆的变化,这可以使器件具有非常紧凑的外形、低能耗和对振动不敏感。虽然许多概念验证光学器件已经使用相变材料进行了演示,但很少能使用电信号进行控制——这是现实世界实现的先决条件。此外,这些电控相变器件表现出较差的耐用性和开关循环性,其原因尚不清楚。为了解决这一挑战,该团队建议首先使用与时间相关的光学和电学测量来研究由这些设备组成的各个层中的热和机械膨胀的作用。其次,该团队将使用高分辨率成像技术来研究不同类型原子的迁移对相变材料可逆性的作用。最后,该团队将利用这些结果构建可靠性更高的相变器件,并探索将其扩展到需要更大可调谐光学元件的应用所需的尺寸的可能性。该团队试图通过互动研讨会和实践演示相结合的方式,对来自历史上服务于少数民族的学区的中学生进行与日常生活中新材料相关的主题教育。该项目还为两名研究生提供先进器件制造和表征技术方面的培训,并在夏季接待来自代表性不足群体的本科生,以扩大stem相关领域的参与。技术摘要:相变材料,如Ge2Sb2Te5和GeTe,由于其折射率的快速,戏剧性,非易失性和可逆变化,特别有希望用于可重构光学器件。可重构智能窗口、反射显示器、超表面和用于存储和计算的光子器件的实验演示重新点燃了人们对这些材料的兴趣。对于尺寸大于光学波长的相变器件,电热开关方法最有前途,但有限的先前工作表明,与相变数据存储的高耐久性(大于1000万周期)相比,其耐久性和可循环性较差(1000个周期或更少)。该团队提出,这些器件内材料的热性能不匹配限制了耐久性,而经常观察到的光学对比度下降是由于相变层中的相分离和空洞形成。为了验证这一假设,该项目有三个目标:(1)通过适当匹配器件层内材料的热膨胀系数来提高电热相变器件的寿命;(2)通过降低器件内的热梯度和改善沉积条件来减少循环引起的光学对比度退化;(3)确定缩放对相变光学器件的影响和限制。该方法将通过互补的热力学建模、动态光电测量和先进的纳米表征技术来研究器件层的热响应,从而克服这些电热开关相变器件有限的可循环性。通过理解和解决当前电热控制光学相变膜的局限性所获得的见解有望广泛应用于可调谐光学涂层,非冯·诺伊曼计算,电光转换以及可重构光子和射频系统等领域。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AnalogVNN: A fully modular framework for modeling and optimizing photonic neural networks
- DOI:10.1063/5.0134156
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Vivswan Shah;N. Youngblood
- 通讯作者:Vivswan Shah;N. Youngblood
Comparing the thermal performance and endurance of resistive and PIN silicon microheaters for phase-change photonic applications
- DOI:10.1364/ome.488564
- 发表时间:2023-05
- 期刊:
- 影响因子:2.8
- 作者:John R. Erickson;Nicholas A. Nobile;D. Vaz;Gouri Vinod;Carlos A. Ríos Ocampo;Yifei Zhang;Juejun Hu;S. Vitale;Feng Xiong;N. Youngblood
- 通讯作者:John R. Erickson;Nicholas A. Nobile;D. Vaz;Gouri Vinod;Carlos A. Ríos Ocampo;Yifei Zhang;Juejun Hu;S. Vitale;Feng Xiong;N. Youngblood
Nonvolatile Tuning of Bragg Structures Using Transparent Phase-Change Materials
使用透明相变材料对布拉格结构进行非易失性调谐
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:2.8
- 作者:Nicholas A Nobile, Chuanyu Lian
- 通讯作者:Nicholas A Nobile, Chuanyu Lian
Coherent Photonic Crossbar Arrays for Large-Scale Matrix-Matrix Multiplication
- DOI:10.1109/jstqe.2022.3171167
- 发表时间:2023-03
- 期刊:
- 影响因子:4.9
- 作者:N. Youngblood
- 通讯作者:N. Youngblood
Designing fast and efficient electrically driven phase change photonics using foundry compatible waveguide-integrated microheaters
- DOI:10.1364/oe.446984
- 发表时间:2022-04-11
- 期刊:
- 影响因子:3.8
- 作者:Erickson, John R.;Shah, Vivswan;Xiong, Feng
- 通讯作者:Xiong, Feng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathan Youngblood其他文献
Microheater hotspot engineering for spatially resolved and repeatable multi-level switching in foundry-processed phase change silicon photonics
用于铸造加工相变硅光子学中空间分辨和可重复多级开关的微加热器热点工程
- DOI:
10.1038/s41467-025-59399-6 - 发表时间:
2025-05-09 - 期刊:
- 影响因子:15.700
- 作者:
Hongyi Sun;Chuanyu Lian;Francis Vásquez-Aza;Sadra Rahimi Kari;Yi-Siou Huang;Alessandro Restelli;Steven A. Vitale;Ichiro Takeuchi;Juejun Hu;Nathan Youngblood;Georges Pavlidis;Carlos A. Ríos Ocampo - 通讯作者:
Carlos A. Ríos Ocampo
OFHE: An Electro-Optical Accelerator for Discretized TFHE
OFHE:用于离散化 TFHE 的电光加速器
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Meng Zheng;Cheng Chu;Qian Lou;Nathan Youngblood;Mo Li;Sajjad Moazeni;Lei Jiang - 通讯作者:
Lei Jiang
Nathan Youngblood的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathan Youngblood', 18)}}的其他基金
CAREER: Multi-Dimensional Photonic Accelerators for Scalable and Efficient Computing
职业:用于可扩展和高效计算的多维光子加速器
- 批准号:
2337674 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Continuing Grant
Collaborative Research: Waveguide-Integrated Graphene Nano-tweezERs (WIGNER) for rapid sorting and analysis of nanovesicles and viruses
合作研究:用于快速分选和分析纳米囊泡和病毒的波导集成石墨烯纳米镊子(WIGNER)
- 批准号:
2227459 - 财政年份:2022
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Collaborative Research: Fast and efficient phase-change photonics using low-dimensional materials
合作研究:使用低维材料的快速高效的相变光子学
- 批准号:
2210169 - 财政年份:2022
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Elucidating Structural Transformations in MoTe2 for Efficient Optoelectronic Memory
阐明 MoTe2 的结构转变以实现高效光电存储器
- 批准号:
2003325 - 财政年份:2020
- 资助金额:
$ 38万 - 项目类别:
Continuing Grant
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
- 批准号:61675216
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Phase-type分布的多状态系统可靠性模型研究
- 批准号:71501183
- 批准年份:2015
- 资助金额:17.4 万元
- 项目类别:青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
- 批准号:51201142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
- 批准号:11101428
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
- 批准号:19374069
- 批准年份:1993
- 资助金额:6.4 万元
- 项目类别:面上项目
相似海外基金
Phase-change nanodroplets for ultrasound based theranostics
用于超声治疗诊断的相变纳米液滴
- 批准号:
2899729 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Studentship
CAREER: A coupled multiscale study of phase change dynamics at curved liquid-vapor interfaces
职业:弯曲液-汽界面相变动力学的耦合多尺度研究
- 批准号:
2339757 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Continuing Grant
Developing a novel Climate change Risk Assessment Framework for cultural heritage in Turkey (CRAFT)- Phase II
为土耳其文化遗产制定新颖的气候变化风险评估框架(CRAFT)-第二阶段
- 批准号:
AH/X006816/1 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Research Grant
Phase Change Materials for Renewable Energy Storage
用于可再生能源存储的相变材料
- 批准号:
IE230100257 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Early Career Industry Fellowships
Analysis and modeling of liquid-vapor phase change phenomena by measuring the nonequilibrium velocity distribution of evaporating molecules
通过测量蒸发分子的非平衡速度分布来分析和建模液-汽相变现象
- 批准号:
23H01338 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Reconfigurable Diffractive Optical Neural Networks with Phase Change Material based Photonic Device
具有基于相变材料的光子器件的可重构衍射光学神经网络
- 批准号:
2316627 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
- 批准号:
2329087 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Continuing Grant
Development of Si-based phase change materials at ultra-high temperature for high-efficiency thermal energy storage systems
开发用于高效热能存储系统的超高温硅基相变材料
- 批准号:
23KJ0032 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Grant-in-Aid for JSPS Fellows
I-Corps: High thermal conductivity polymers and phase change materials based on graphene
I-Corps:基于石墨烯的高导热聚合物和相变材料
- 批准号:
2330247 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
CISE-MSI : RCBP-ED: CCF-FET : Improving Reliability and Durability in Phase Change Main Memory (PCM)
CISE-MSI:RCBP-ED:CCF-FET:提高相变主存储器 (PCM) 的可靠性和耐用性
- 批准号:
2318553 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Standard Grant