Bridging the gap in multiphase flow simulations

缩小多相流模拟的差距

基本信息

  • 批准号:
    2028617
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Understanding and predicting the dynamics of multiphase flows is important as these flows are found in everyday life and in many engineering applications. In nature, flows that involve two phases or more include clouds, dust storms and sediment transport in rivers. Fuel sprays, pharmaceutical sprays to treat pulmonary infections and diseases, pneumatic transport, powder processing and bubble column reactors are among the many applications relying on multiphase flows. Unlike single-phase flows which have established methods, simulations of two-phase flows are far more challenging due to the added complexity and cost required to deal with discontinuities, mass and momentum exchange at the interface separating the two phases. Despite decades of growing computational power, deployment of state-of-the art multiphase flow solvers remains exclusive to well curated and simplified academic flows, while many applications remain out of reach. The goal of this project is to develop numerical strategies that retains high-fidelity yet reduces the computational cost using computationally efficient methods. This research will benefit a wide range of industries where multiphase flow simulations are routinely conducted to inform the design of engineering systems. The reduced computational cost will enable simulations of real-life flows in regimes previously inaccessible. The project also aims at inspiring young kids to pursue careers related to fluid mechanics through an experiential learning module delivered during an outreach event in a digitally-enhanced performance arts stage at Arizona State University. Graduate and undergraduate students will receive stronger professional preparation and training through involvement in research.A novel computational approach will be investigated, which enables a consistent and continuous transition from fully resolved to fully modeled interfacial dynamics within the same simulation. The method builds on the volume-filtering theory as its mathematical support. The approach is similar in spirit to the Large Eddy Simulation method where interface scales larger than the filter width are fully resolved, and scales smaller than the filter width are fully modeled. Three variants of the method will be implemented and characterized, Volume-Filtered Immersed Boundary, Volume-Filtered Volume of Fluid and Volume-Filtered Eulerian-Lagrangian. The investigation will reveal the precise conditions allowing consistent and conservative transition from resolved to modeled interface using the Eulerian-Lagrangian approach where the characteristic interface length scale drops below the filter size. The approach will be demonstrated in simulations of atomizing jets and particle-laden channel flow.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
理解和预测多相流的动态非常重要,因为在日常生活和许多工程应用中都可以找到这些流动。在自然界中,涉及两个阶段或更长时间的流量包括云层,尘埃风暴和河流中的沉积物运输。燃料喷雾剂,用于治疗肺部感染和疾病的药物喷雾剂,气动传输,粉末加工和气泡色谱柱反应器之一都是依赖多相流的众多应用之一。与已经建立方法的单相流不同,两相流的仿真由于在分隔两个阶段的界面处的不连续性,质量和动量交换所需的增加的复杂性和成本而更具挑战性。尽管数十年来的计算能力增长,但最先进的多相求解器的部署仍然是精心策划和简化的学术流程,而许多应用程序仍然无法实现。该项目的目的是制定保留高保真性但使用计算有效方法降低计算成本的数值策略。这项研究将受益于广泛的行业,在这些行业中,经常进行多相流模拟以告知工程系统的设计。降低的计算成本将在以前无法访问的政权中模拟现实生活中的模拟。该项目还旨在通过在亚利桑那州立大学(Arizona State University)的数字增强表演艺术舞台上进行的外展活动中提供的体验学习模块来启发小孩从事与流体机械师有关的职业。研究生和本科生将通过参与研究进行更强大的专业准备和培训。将研究一种新颖的计算方法,这可以在同一模拟中从完全分辨率到完全建模的界面动力学进行一致,连续的过渡。该方法基于滤波理论作为其数学支持。该方法在精神上与大型涡流模拟方法相似,该方法的界面尺度大于滤波器的宽度完全分辨,并且比过滤器宽度小的尺度完全建模。该方法的三种变体将被实施并表征,体积过滤的浸入边界,体积过滤的流体和体积过滤的欧拉 - 拉格朗日。该研究将揭示精确的条件,从而允许使用Eulerian-Lagrangian方法从分析到建模的界面进行一致和保守的过渡,其中特征界面长度尺度降低到过滤器大小以下。该方法将在雾化喷气机和载有颗粒的通道流的模拟中证明。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响标准,被认为值得通过评估来获得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The volume-filtering immersed boundary method
  • DOI:
    10.1016/j.jcp.2023.112136
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Dave;M. Herrmann;M. H. Kasbaoui
  • 通讯作者:
    H. Dave;M. Herrmann;M. H. Kasbaoui
Mechanisms of drag reduction by semidilute inertial particles in turbulent channel flow
  • DOI:
    10.1103/physrevfluids.8.084305
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    H. Dave;M. H. Kasbaoui
  • 通讯作者:
    H. Dave;M. H. Kasbaoui
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mohamed Kasbaoui其他文献

Mohamed Kasbaoui的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mohamed Kasbaoui', 18)}}的其他基金

Theoretical and numerical investigation of particle-vortex interaction in semi-dilute dusty flows
半稀尘流中粒子-涡相互作用的理论与数值研究
  • 批准号:
    2148710
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

乙肝病毒核心蛋白通过抑制Rab-GAP诱导肝细胞损伤的分子机制研究
  • 批准号:
    82372233
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
超快热刺激下GAP/CL-20推进剂瞬态响应演变规律与机理研究
  • 批准号:
    52306161
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
PKC调控GAP-43参与A型肉毒毒素治疗后神经肌肉接头重建机制研究
  • 批准号:
    82372563
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
数字经济、人力资本结构和收入差距:基于企业薪酬调查数据的影响和机制分析
  • 批准号:
    72303041
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
血浆中突触相关蛋白GAP-43异常升高在阿尔茨海默病中的相关机制及作用研究
  • 批准号:
    82301380
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The research of the anisotropic superconducting gap in the origin to orbital degree of freedom
各向异性超导能隙原点到轨道自由度的研究
  • 批准号:
    17J06088
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Construction of new methodology of studying the structure of superconducting gap of multigapped superconductors using Leggt mode etc
构建利用Leggt模式等研究多能隙超导体超导能隙结构的新方法
  • 批准号:
    26610094
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
共鳴安定化状態のための時間依存密度汎関数法
共振稳定态的时间相关密度泛函理论
  • 批准号:
    20038012
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Study of vortex state in magnesium diboride superconductors -A vortex matter phase diagram originating from two superconducting gap
二硼化镁超导体中涡旋态的研究——源自两个超导间隙的涡旋物质相图
  • 批准号:
    20540343
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NANOSCALE CONTROL OF MOLECULAR DISPERSION-PHASE SEPARATION FOR TWO-DIMENSIONAL AGGREGATING SYSTEM
二维聚集体系分子分散相分离的纳米级控制
  • 批准号:
    09450039
  • 财政年份:
    1997
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了