RAPID: Computational Modeling of Contact Density and Outbreak Estimation for COVID-19 Using Large-scale Geolocation Data from Mobile Devices
RAPID:使用来自移动设备的大规模地理位置数据进行接触密度计算建模和 COVID-19 爆发估计
基本信息
- 批准号:2028687
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2021-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The outbreak of COVID-19 has highlighted both the growing global risk of emerging pandemics and the urgent need for enhanced data-driven tools to identify, contain, and mitigate their effects, particularly in dense urban areas. There has been increasing attention given to locational data from smartphones as a way to enhance epidemiological modeling and predict outbreak progression, transmission, and exposure risk. When combined with artificial intelligence or machine learning algorithms, these high resolution data have the potential to vastly improve the granularity and precision of infection and hospitalization estimates. However, the use of locational data raises serious social, ethical, and technical challenges. Trade-offs between the potential public health benefits and the impacts for privacy and civil liberties have started to be debated in earnest within the context of the current pandemic, especially in light of increasing use of these data by private companies to promote targeted advertisements, evaluate retail consumer behavior, and model travel demand, among other applications. Furthermore, the use of these data in the public interest is undermined by an incomplete understanding of the representativeness and bias embedded in these data, particularly in relation to under-represented and vulnerable communities. What is not yet known is the extent of this bias in locational data and how the public health benefits of using these data diminish with spatial and temporal aggregation, which could help to minimize privacy concerns in the collection and use of these data. To address these questions, this project will develop computational models derived from large-scale locational data to (1) estimate the exposure density across a range of temporal (hourly, daily, etc.) and spatial (census block, neighborhood, etc.) scales, which will enable officials and researchers to evaluate and predict transmission rates in a particular area; (2) measure and evaluate the extent and effectiveness of social (physical) distancing efforts over time and comparatively within and across counties and cities, as well as understand the disparate impacts on vulnerable communities and populations; and (3) measure the extent of disease spread based on movement and travel patterns between neighborhoods and communities, which will support predictions of the spatial-temporal patterns of disease outbreak and identify “at-risk” locations based on the aggregated mobility trajectories for areas were infections have been identified or suspected. The project team is particularly concerned with how shelter-in-place orders and exposure risk disproportionately impact low-income and minority communities, and the implications of potential bias in locational data in assessing socioeconomic variations. The project will assess how the usefulness of these models for epidemiologists and public health officials varies with spatial aggregation (e.g. is neighborhood level data superior to county level data) and temporal aggregation (e.g. is a near-real-time model superior to daily or weekly timescales) and provide quantitative performance assessments that can be used for collective decision-making on the trade-offs between health benefits and privacy risk. Project outputs will be made open-source and publicly available as appropriate.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
2019冠状病毒病的爆发凸显了全球新出现的流行病风险日益增加,以及迫切需要增强的数据驱动工具来识别、控制和减轻其影响,特别是在人口密集的城市地区。人们越来越关注智能手机的位置数据,将其作为增强流行病学建模和预测疫情进展、传播和暴露风险的一种方式。当与人工智能或机器学习算法相结合时,这些高分辨率数据有可能大大提高感染和住院估计的粒度和精度。然而,位置数据的使用带来了严重的社会、伦理和技术挑战。在当前疫情的背景下,人们开始认真讨论潜在的公共卫生益处与对隐私和公民自由的影响之间的权衡,特别是考虑到私营公司越来越多地使用这些数据来推广有针对性的广告,评估零售消费者行为,以及模拟旅行需求等应用。此外,由于不完全理解这些数据的代表性和偏见,特别是对代表性不足和弱势群体的代表性和偏见,这些数据的使用也受到损害。目前尚不清楚的是,位置数据中这种偏见的程度,以及使用这些数据的公共卫生效益如何随着空间和时间的汇总而减少,这可能有助于在收集和使用这些数据时尽量减少隐私问题。为了解决这些问题,本项目将开发从大规模位置数据导出的计算模型,以(1)估计一系列时间(每小时,每天等)的暴露密度。和空间(人口普查区块、邻里等)(2)评估和评估社会传播的程度和有效性;(3)评估和评估艾滋病毒/艾滋病的传播率;(4)评估和评估艾滋病毒/艾滋病的传播率;(5)评估和评估艾滋病毒/艾滋病的传播率;(6)评估和评估艾滋病毒/艾滋病的传播率。(物理)随着时间的推移,在县和城市内部和之间进行比较,并了解对弱势社区和人口的不同影响;以及(3)基于邻里和社区之间的移动和旅行模式来测量疾病传播的程度,这将支持对疾病爆发的时空模式的预测,根据已确定或疑似感染的地区的聚集移动轨迹确定的位置。项目小组特别关注就地安置命令和暴露风险如何不成比例地影响低收入和少数族裔社区,以及地点数据在评估社会经济变化方面的潜在偏见的影响。该项目将评估这些模型对流行病学家和公共卫生官员的有用性如何随空间聚集而变化(例如,邻域级数据是否上级于县级数据)和时间聚合(例如,是上级每日或每周时间尺度的近实时模型),并提供可用于贸易集体决策的定量绩效评估-健康利益和隐私风险之间的平衡。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Constantine Kontokosta其他文献
Constantine Kontokosta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Constantine Kontokosta', 18)}}的其他基金
AI-DCL: EAGER: Bias and Discrimination in City Predictive Analytics
AI-DCL:EAGER:城市预测分析中的偏见和歧视
- 批准号:
1926470 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Urban Informatics for Smart, Sustainable Cities: Toward a Data-Driven Understanding of Metropolitan Energy Dynamics
职业:智慧、可持续城市的城市信息学:以数据驱动的方式理解大都市能源动态
- 批准号:
1653772 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Characterization of Vocal Fold Vascular Lesions Biomechanics using Computational Modeling
职业:使用计算模型表征声带血管病变生物力学
- 批准号:
2338676 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Rapid computational modeling of wildfires and management with emphasis on human activity
合作研究:RAPID:野火和管理的快速计算建模,重点关注人类活动
- 批准号:
2345256 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
REU Site: Computational Modeling Serving Portland
REU 站点:为波特兰服务的计算模型
- 批准号:
2244551 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Generative Physical Modeling for Computational Imaging Systems
职业:计算成像系统的生成物理建模
- 批准号:
2239687 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Computational modeling of IP3 production in neuronal dendritic spines based on the distribution pattern of PIP2 and mGluRs
基于 PIP2 和 mGluR 分布模式的神经元树突棘中 IP3 产生的计算模型
- 批准号:
23K19411 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Developing a nucleic acid force field with direct chemical perception for computational modeling of nucleic acid therapeutics
开发具有直接化学感知的核酸力场,用于核酸治疗的计算建模
- 批准号:
10678562 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Bottom-up and top-down computational modeling approaches to study CMV retinitis
研究 CMV 视网膜炎的自下而上和自上而下的计算模型方法
- 批准号:
10748709 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Triage of Developmental and Reproductive Toxicants using an In vitro to In Vivo Extrapolation (IVIVE)-Toxicokinetic Computational modeling Application
使用体外到体内外推法 (IVIVE) 对发育和生殖毒物进行分类 - 毒代动力学计算模型应用
- 批准号:
10757140 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
HCC: Small: Toward Computational Modeling of Autism Spectrum Disorder: Multimodal Data Collection, Fusion, and Phenotyping
HCC:小型:自闭症谱系障碍的计算模型:多模式数据收集、融合和表型分析
- 批准号:
2401748 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant














{{item.name}}会员




