EAGER SARE: Physical-Layer Security of THz Communication Using Orbital Angular Momentum and Rapid Frequency Hopping

EAGER SARE:使用轨道角动量和快速跳频的太赫兹通信物理层安全

基本信息

  • 批准号:
    2028824
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

With the ever-growing number of wireless devices handling personal health, finance, and other private data, the security associated with the over-the-air data transmission becomes a major concern. At present, the protection of data transmission almost entirely relies on digital encryption, which has various drawbacks and vulnerabilities. For high-volume data transmission, energy-efficient and fast symmetric encryption (e.g., advanced encryption standard, AES) is commonly used, but its cipher secret key, which needs to be wirelessly shared between the transmitter and receiver, is susceptible to eavesdropping. Asymmetric encryption with a public-key infrastructure (e.g., RSA cryptography) can be used to secure key distribution, but it requires energy-consuming computation and complex two-way communication protocols. As a result, additional non-digital security approaches using the physical properties of wireless hardware and electromagnetic waves become attractive. Transmission using narrow beams at millimeter-wave and terahertz (THz) frequencies is expected to reduce the chance of eavesdropping. However, due to the inherently non-ideal beam shape generated by actual antenna arrays, leakage of information still occurs. To address the above issues, this project will investigate the design, analysis, and experiments of a new approach for secured wireless transmission of secret keys. It is expected to significantly increase the capabilities of wireless backhaul infrastructures, especially the future “beyond-5G” networks, against eavesdropping and attacking. It will also advance the interdisciplinary research and education across the fields of THz technologies, microelectronics, and wireless security.The project will use a scheme that encodes the data onto various spatial-distribution patterns (i.e., orbital-angular momentum, OAM) of the wave-front phases in a THz beam. The decoding of such a scheme requires the receiver to be precisely located along the axis of the OAM wave, making eavesdropping very hard and prone to be detected. The project will study approaches that utilize superposition of multiple OAM modes, which further enhances security with the additional information ambiguity induced to illegitimate receivers. To avoid any possible selective jamming, a bit-level rapid frequency hopping scheme will also be applied. The researchers will not only investigate the theoretical security performance limits of the “laser-like” transmission scheme against various sophisticated hacking scenarios, but also provide experimental demonstrations using custom-designed microelectronic chips. Operations such as the generation, detection, coding, frequency-hopping, and beam-steering of THz OAM waves will be performed. The one-way, high-security transmission of secret key to be enabled by this project will complement the existing digital encryption schemes and further the understanding of the THz technologies and applications in wireless security systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着数量不断增长的无线设备来处理个人健康,金融和其他私人数据,与空中数据传输相关的安全性成为主要问题。目前,数据传输几乎完全依赖于数字加密,该加密具有各种缺点和漏洞。对于大批量数据传输,通常使用能效和快速对称加密(例如,高级加密标准,AES),但其Cipher Secret键需要在发射机和接收器之间无线共享,易于窃听。可以使用公用基础架构(例如,RSA加密术)的不对称加密来确保密钥分布,但需要消耗能量的计算和复杂的双向通信协议。结果,使用无线硬件和电磁波的物理特性的其他非数字安全方法变得有吸引力。在毫米波和Terahertz(THZ)频率下使用窄光束的传输预计将减少窃听的机会。但是,由于实际天线阵列产生了遗传的非理想束形状,因此信息的泄漏仍然发生。为了解决上述问题,该项目将研究一种新方法的设计,分析和实验,以确保无线传输秘密密钥。预计它将显着提高无线回程基础架构的功能,尤其是未来的“超过5G”网络,反对窃听和攻击。它还将推进THZ技术,微电子和无线安全领域的跨学科研究和教育。该项目将使用将数据编码在THZ束中波浪段的各种空间分布模式(即,轨道 - 角动量,OAM,OAM)上的方案。这种方案的解码要求接收器沿着OAM波的轴心精确地位于OAM波的轴上,从而使窃听非常困难且容易被检测到。该项目将研究利用多种OAM模式叠加的方法,这进一步增强了安全性,并通过引起非法接收器的其他信息歧义。为了避免任何可能的选择性干扰,还将采用比特级快速跳跃方案。研究人员不仅将针对各种复杂的黑客攻击方案研究“激光样”传输方案的理论安全性能限制,而且还使用定制设计的微电子芯片进行了实验演示。将执行诸如生成,检测,编码,频率跳高和横梁的操作。该项目将启用秘密钥匙的单向高安全性传播将完成现有的数字加密方案,并进一步了解无线安全系统中THZ技术和应用的理解。该奖项反映了NSF的法定任务,并被认为是通过评估基金会的知识分子和更广泛的影响来通过评估来获得支持的珍贵。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Physical-Layer Security for THz Communications via Orbital Angular Momentum Waves
  • DOI:
    10.1109/sips55645.2022.9919249
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jongchan Woo;Muhammad Ibrahim Wasiq Khan;Mohamed I. Ibrahim;R. Han;A. Chandrakasan;R. Yazicigil
  • 通讯作者:
    Jongchan Woo;Muhammad Ibrahim Wasiq Khan;Mohamed I. Ibrahim;R. Han;A. Chandrakasan;R. Yazicigil
A 0.31THz CMOS Uniform Circular Antenna Array Enabling Generation/Detection of Waves with Orbital-Angular Momentum
  • DOI:
    10.1109/rfic51843.2021.9490402
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Muhammad Ibrahim Wasiq Khan;Jongchan Woo;Xiang Yi;Mohamed I. Ibrahim;R. Yazicigil;A. Chandrakasan;
  • 通讯作者:
    Muhammad Ibrahim Wasiq Khan;Jongchan Woo;Xiang Yi;Mohamed I. Ibrahim;R. Yazicigil;A. Chandrakasan;
A 0.31-THz Orbital-Angular-Momentum (OAM) Wave Transceiver in CMOS With Bits-to-OAM Mode Mapping
  • DOI:
    10.1109/jssc.2022.3141366
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Muhammad Ibrahim Wasiq Khan;Jongchan Woo;Xiang Yi;Mohamed I. Ibrahim;R. Yazicigil;A. Chandrakasan;
  • 通讯作者:
    Muhammad Ibrahim Wasiq Khan;Jongchan Woo;Xiang Yi;Mohamed I. Ibrahim;R. Yazicigil;A. Chandrakasan;
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruonan Han其他文献

Metal-Optic Nanophotonic Modulators in Standard CMOS Technology
标准 CMOS 技术中的金属光学纳米光子调制器
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Elkabbash;Sivan Trajtenberg‐Mills;Isaac Harris;S. Bandyopadhyay;Mohamed I. Ibrahim;Archer Wang;Xibi Chen;Cole J. Brabec;Hasan Z. Yildiz;Ruonan Han;Dirk Englund
  • 通讯作者:
    Dirk Englund
Broadband Root-Mean-Square Detector in CMOS for On-Chip Measurements of Millimeter-Wave Voltages
用于毫米波电压片上测量的 CMOS 宽带均方根检测器
  • DOI:
    10.1109/led.2012.2190258
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Chuan Lee;Wooyeol Choi;Ruonan Han;H. Shichijo;K. O. Kenneth
  • 通讯作者:
    K. O. Kenneth
Cryo-CMOS Controller for Solid-State Color-Center Qubits Towards Scalable Quantum Processors
用于固态色心量子位的冷冻 CMOS 控制器迈向可扩展的量子处理器
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mohamed I. Ibrahim;Ruonan Han
  • 通讯作者:
    Ruonan Han
The Pursuit of Practical Applications of THz CMOS Chips (Invited)
太赫兹CMOS芯片实际应用的追求(特邀)

Ruonan Han的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ruonan Han', 18)}}的其他基金

NSF Workshop on Security in RF/Analog Microelectronics and Electromagnetics, October, 22-23, 2019 in Alexandria, VA.
NSF 射频/模拟微电子和电磁学安全研讨会,2019 年 10 月 22 日至 23 日在弗吉尼亚州亚历山大举行。
  • 批准号:
    1937994
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SpecEES: Tag-of-Everything: Secured Wireless Powering and Communication Using THz Spectrum for Ultra-Small, Package-Less ID Chips
SpecEES:一切标签:使用太赫兹频谱为超小型、无封装 ID 芯片提供安全的无线供电和通信
  • 批准号:
    1824360
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CMOS THz Molecular Clock With Enhanced Stability And Energy Efficiency
具有增强稳定性和能源效率的 CMOS 太赫兹分子时钟
  • 批准号:
    1809917
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: On-Chip Terahertz Electronic Frequency Combs
职业:片上太赫兹电子频率梳
  • 批准号:
    1653100
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

EAGER: SARE: Collaborative: Low Energy Secure Wireless Transceiversfor IoT Trusted Communications
EAGER:SARE:协作:用于物联网可信通信的低能耗安全无线收发器
  • 批准号:
    2029407
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: SARE: Collaborative Research: Exploring and Mitigating Attacks of Millimeter-wave Radar Sensors in Autonomous Vehicles
EAGER:SARE:协作研究:探索和减轻自动驾驶汽车中毫米波雷达传感器的攻击
  • 批准号:
    2028872
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: SARE: Multiferroic Shields for Smart Analog Security
EAGER:SARE:用于智能模拟安全的多铁屏蔽
  • 批准号:
    2029007
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: SARE: Secure LiDAR Systems with Frequency Encryption
EAGER:SARE:具有频率加密功能的安全 LiDAR 系统
  • 批准号:
    2028406
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: SARE: Dynamic Phase Center Antennas for Secure Sensing and Communications
EAGER:SARE:用于安全传感和通信的动态相位中心天线
  • 批准号:
    2028736
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了