EAGER: SARE: Secure LiDAR Systems with Frequency Encryption

EAGER:SARE:具有频率加密功能的安全 LiDAR 系统

基本信息

  • 批准号:
    2028406
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Today’s smart devices, robots, and vehicles are becoming ever more autonomous and this places utmost importance on their reliability and safety. To meet these safety demands, light detection and ranging (LiDAR) systems have been used to make a 3D map of environment in order to navigate the autonomous agent and avoid collisions. A LiDAR measures the distance by illuminating a target with laser light and detects the reflection with a sensor. They are becoming an inevitable part of autonomous vehicles, drones, and robots by providing this vital sensing and imaging capability. However, today’s LiDARs also impose potential human and public safety threats due to their security vulnerabilities. For instance, an attacker can deliberately send a spoofing signal to the victim’s LiDAR which cannot differentiate the spoofing signal from the actual reflected signal. In doing so, attacker can overwrite the actual reflected signal. Eventually, the attacker can trick the victim by hiding or misrepresenting its actual location, leading to serious security and safety issues. While LiDAR systems are on the verge of commercialization, these scenarios are unavoidable and the prevention techniques have not been well studied and researched. This project aims at investigating these issues and proposing a new secure scheme based on frequency encryption. In addition to LiDAR, this approach will have significant broader impacts on securing various types of wireless optical systems and satellite communications as well. Furthermore, this research involving electro-optical system design offers many exciting opportunities to incorporate new materials and paradigms into the curriculums and STEM-related K-12 outreach programs. Investigating the hardware-level security issues of complex electro-optical systems such as a LiDAR requires new unified electronic-photonic modeling and co-simulation frameworks. This work develops such a platform by utilizing Verilog-A and MATLAB behavioral models and incorporating all relevant electro-optical dynamics. This platform enables simultaneously studying the performance and security vulnerabilities including jamming and spoofing of LiDAR systems. In particular, this project focuses on beam steering frequency modulated continuous wave (FMCW) LiDARs since they are the most promising and robust LiDAR technology as of today. Additionally, the results will be experimentally verified using a benchtop lab setup. Finally, a novel ranging approach called frequency encrypted FMCW (FE-FMCW) will be developed and implemented which can protect the state-of-the-art FMCW LiDAR systems from malicious attacks with minimal compromise on performance. In order to do so, a holistic design methodology based on mixed-signal electronic and photonic circuit design and signal processing will be deployed to realize and implement the newly proposed FE-FMCW LiDAR. This technique relies on a new optical phase-locked loop (OPLL) design which can encrypt the frequency chirp-rate of the laser while maintaining required linearity and bandwidth for FMCW signals. The frequency encryption code is generated on the integrated-circuit chip and it will be unique to each LiDAR hardware system. This new technique will transform the system architecture of future LiDAR systems and many other emerging electronic-photonic systems as well as ensuring their security and safety.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当今的智能设备,机器人和车辆变得越来越自动,这对它们的可靠性和安全性至关重要。为了满足这些安全需求,光检测和范围(LIDAR)系统已被用来制作3D环境地图,以导航自主剂并避免碰撞。激光雷达通过用激光照明目标来测量距离,并用传感器检测反射。通过提供这种重要的灵敏度和成像能力,它们正在成为自动驾驶汽车,无人机和机器人的必然部分。但是,由于其安全脆弱性,今天的激增者也构成了潜在的人类和公共安全威胁。例如,攻击者可以故意将欺骗信号发送给受害者的雷达(LiDAR),该信号无法将欺骗信号与实际反射信号区分开。这样,攻击者可以覆盖实际反射的信号。最终,攻击者可以通过隐藏或虚假陈述其实际位置来欺骗受害者,从而导致严重的安全问题。尽管激光雷达系统正处于商业化的边缘,但这些方案是不可避免的,预防技术尚未得到很好的研究和研究。该项目旨在研究这些问题,并根据频率加密提出新的安全方案。除了激增外,这种方法还将对确保各种类型的无线光学系统和卫星通信产生更广泛的影响。此外,这项涉及电光系统设计的研究为将新材料和范式纳入课程和与STEM相关的K-12外展计划提供了许多令人兴奋的机会。研究复杂的电光系统(例如LiDAR)的硬件级安全问题需要新的统一的电子光功能建模和共模拟框架。这项工作通过利用Verilog-A和Matlab行为模型来开发这样的平台,并结合了所有相关的电流动力学。该平台可以同时研究绩效和安全性漏洞,包括雷达系统的干扰和欺骗。特别是,该项目的重点是梁转向频率调制连续波(FMCW)激光痛,因为它们是截至当今的最有前途,最强大的激光雷达技术。此外,将使用台式实验室设置对结果进行实验验证。最后,将开发和实施一种新型的范围方法,称为频率加密FMCW(FE-FMCW),可以保护最先进的FMCW激光雷达系统免受恶意攻击,而对性能的折衷极少。为此,将部署基于混合信号电子和光子电路设计和信号处理的整体设计方法,以实现和实施新提出的FE-FMCW激光雷达。该技术依赖于新的光学相锁环(OPLL)设计,该设计可以加密激光的频率速率,同时保持FMCW信号所需的线性和带宽。频率加密代码是在集成电路芯片上生成的,每个LIDAR硬件系统将是唯一的。这项新技术将改变未来LIDAR系统和许多其他新兴的电子光功能系统的系统体系结构,并确保其安全性和安全性。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点评估而被视为珍贵的支持,并具有更广泛的影响。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Secure FMCW LiDAR Systems with Frequency Encryption
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sajjad Moazeni其他文献

OFHE: An Electro-Optical Accelerator for Discretized TFHE
OFHE:用于离散化 TFHE 的电光加速器
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Meng Zheng;Cheng Chu;Qian Lou;Nathan Youngblood;Mo Li;Sajjad Moazeni;Lei Jiang
  • 通讯作者:
    Lei Jiang
A Mixed-Signal Compute-in-Memory Architecture for Solving All-to-All Connected MAXCUT Problems with Sub-µs Time-to-Solution
一种混合信号内存计算架构,可在亚微秒内解决所有连接的 MAXCUT 问题

Sajjad Moazeni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sajjad Moazeni', 18)}}的其他基金

CAREER: Next-generation Optical I/O with Embedded Equalization for Disaggregated AI Computing
职业:具有嵌入式均衡功能的下一代光学 I/O,适用于分解式 AI 计算
  • 批准号:
    2142996
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
FET: Medium: A Hybrid Co-processing Unit (HCU) using Phase-change Photonics in CMOS for Large-scale and Ultra-fast Machine Learning Acceleration
FET:中:使用 CMOS 中相变光子学的混合协同处理单元 (HCU),用于大规模和超快的机器学习加速
  • 批准号:
    2105972
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似海外基金

EAGER: SARE: Collaborative: Low Energy Secure Wireless Transceiversfor IoT Trusted Communications
EAGER:SARE:协作:用于物联网可信通信的低能耗安全无线收发器
  • 批准号:
    2029407
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: SARE: Dynamic Phase Center Antennas for Secure Sensing and Communications
EAGER:SARE:用于安全传感和通信的动态相位中心天线
  • 批准号:
    2028736
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: SARE: Real-Time Learning and Countering of Side-Channel Emissions to Enable Secure RF and Analog Microelectronics
EAGER:SARE:实时学习和对抗侧信道发射,以实现安全的射频和模拟微电子学
  • 批准号:
    2028893
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: SARE: Collaborative: Low Energy Secure Wireless Transceivers for IoT Trusted Communications
EAGER:SARE:协作:用于物联网可信通信的低能耗安全无线收发器
  • 批准号:
    2029461
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: SARE: Directional Modulation Non-Contiguous OFDM Retrodirective Communication for Secure IoT
EAGER:SARE:用于安全物联网的定向调制非连续 OFDM 反向通信
  • 批准号:
    2028823
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了