EAGER: SARE: Secure LiDAR Systems with Frequency Encryption
EAGER:SARE:具有频率加密功能的安全 LiDAR 系统
基本信息
- 批准号:2028406
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Today’s smart devices, robots, and vehicles are becoming ever more autonomous and this places utmost importance on their reliability and safety. To meet these safety demands, light detection and ranging (LiDAR) systems have been used to make a 3D map of environment in order to navigate the autonomous agent and avoid collisions. A LiDAR measures the distance by illuminating a target with laser light and detects the reflection with a sensor. They are becoming an inevitable part of autonomous vehicles, drones, and robots by providing this vital sensing and imaging capability. However, today’s LiDARs also impose potential human and public safety threats due to their security vulnerabilities. For instance, an attacker can deliberately send a spoofing signal to the victim’s LiDAR which cannot differentiate the spoofing signal from the actual reflected signal. In doing so, attacker can overwrite the actual reflected signal. Eventually, the attacker can trick the victim by hiding or misrepresenting its actual location, leading to serious security and safety issues. While LiDAR systems are on the verge of commercialization, these scenarios are unavoidable and the prevention techniques have not been well studied and researched. This project aims at investigating these issues and proposing a new secure scheme based on frequency encryption. In addition to LiDAR, this approach will have significant broader impacts on securing various types of wireless optical systems and satellite communications as well. Furthermore, this research involving electro-optical system design offers many exciting opportunities to incorporate new materials and paradigms into the curriculums and STEM-related K-12 outreach programs. Investigating the hardware-level security issues of complex electro-optical systems such as a LiDAR requires new unified electronic-photonic modeling and co-simulation frameworks. This work develops such a platform by utilizing Verilog-A and MATLAB behavioral models and incorporating all relevant electro-optical dynamics. This platform enables simultaneously studying the performance and security vulnerabilities including jamming and spoofing of LiDAR systems. In particular, this project focuses on beam steering frequency modulated continuous wave (FMCW) LiDARs since they are the most promising and robust LiDAR technology as of today. Additionally, the results will be experimentally verified using a benchtop lab setup. Finally, a novel ranging approach called frequency encrypted FMCW (FE-FMCW) will be developed and implemented which can protect the state-of-the-art FMCW LiDAR systems from malicious attacks with minimal compromise on performance. In order to do so, a holistic design methodology based on mixed-signal electronic and photonic circuit design and signal processing will be deployed to realize and implement the newly proposed FE-FMCW LiDAR. This technique relies on a new optical phase-locked loop (OPLL) design which can encrypt the frequency chirp-rate of the laser while maintaining required linearity and bandwidth for FMCW signals. The frequency encryption code is generated on the integrated-circuit chip and it will be unique to each LiDAR hardware system. This new technique will transform the system architecture of future LiDAR systems and many other emerging electronic-photonic systems as well as ensuring their security and safety.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
如今的智能设备、机器人和车辆正变得越来越自动化,这使得它们的可靠性和安全性变得至关重要。为了满足这些安全需求,光探测和测距(LiDAR)系统已被用于制作环境的3D地图,以便导航自主代理并避免碰撞。LiDAR通过用激光照射目标来测量距离,并用传感器检测反射。通过提供这种至关重要的传感和成像能力,它们正在成为自动驾驶汽车、无人机和机器人的一个不可避免的组成部分。然而,由于其安全漏洞,今天的LiDAR也带来了潜在的人类和公共安全威胁。例如,攻击者可以故意向受害者的LiDAR发送欺骗信号,而受害者的LiDAR无法区分欺骗信号和实际反射信号。在这样做时,攻击者可以覆盖实际的反射信号。最终,攻击者可以通过隐藏或歪曲受害者的实际位置来欺骗受害者,从而导致严重的安全问题。虽然LiDAR系统即将商业化,但这些场景是不可避免的,并且预防技术尚未得到很好的研究和研究。本项目旨在研究这些问题,并提出一种新的基于频率加密的安全方案。除了激光雷达之外,这种方法还将对确保各种类型的无线光学系统和卫星通信的安全产生更广泛的影响。此外,这项涉及电光系统设计的研究提供了许多令人兴奋的机会,可以将新材料和范例纳入到与STEM相关的K-12推广计划中。研究复杂光电系统(如LiDAR)的硬件级安全问题需要新的统一电子-光子建模和协同仿真框架。这项工作开发了这样一个平台,利用Verilog-A和MATLAB行为模型,并结合所有相关的电光动力学。该平台可以同时研究性能和安全漏洞,包括LiDAR系统的干扰和欺骗。特别是,该项目的重点是波束转向调频连续波(FMCW)激光雷达,因为它们是目前最有前途和最强大的激光雷达技术。此外,将使用台式实验室装置对结果进行实验验证。最后,一种新的测距方法,称为频率加密FMCW(FE-FMCW)将开发和实现,它可以保护国家的最先进的FMCW激光雷达系统免受恶意攻击的性能最小的妥协。为了做到这一点,将部署基于混合信号电子和光子电路设计和信号处理的整体设计方法来实现和实施新提出的FE-FMCW LiDAR。该技术依赖于一种新的光锁相环(OPLL)设计,该设计可以加密激光器的频率啁啾率,同时保持FMCW信号所需的线性度和带宽。频率加密代码在集成电路芯片上生成,并且对于每个LiDAR硬件系统都是唯一的。这项新技术将改变未来激光雷达系统和许多其他新兴电子光子系统的系统架构,并确保其安全性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Secure FMCW LiDAR Systems with Frequency Encryption
- DOI:10.1145/3560834.3563829
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Marziyeh Rezaei;L. Hussein;S. Moazeni
- 通讯作者:Marziyeh Rezaei;L. Hussein;S. Moazeni
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sajjad Moazeni其他文献
OFHE: An Electro-Optical Accelerator for Discretized TFHE
OFHE:用于离散化 TFHE 的电光加速器
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Meng Zheng;Cheng Chu;Qian Lou;Nathan Youngblood;Mo Li;Sajjad Moazeni;Lei Jiang - 通讯作者:
Lei Jiang
A Mixed-Signal Compute-in-Memory Architecture for Solving All-to-All Connected MAXCUT Problems with Sub-µs Time-to-Solution
一种混合信号内存计算架构,可在亚微秒内解决所有连接的 MAXCUT 问题
- DOI:
10.1109/iscas58744.2024.10558548 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
A. Dee;Katherine Bennett;Sajjad Moazeni - 通讯作者:
Sajjad Moazeni
Sajjad Moazeni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sajjad Moazeni', 18)}}的其他基金
CAREER: Next-generation Optical I/O with Embedded Equalization for Disaggregated AI Computing
职业:具有嵌入式均衡功能的下一代光学 I/O,适用于分解式 AI 计算
- 批准号:
2142996 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
FET: Medium: A Hybrid Co-processing Unit (HCU) using Phase-change Photonics in CMOS for Large-scale and Ultra-fast Machine Learning Acceleration
FET:中:使用 CMOS 中相变光子学的混合协同处理单元 (HCU),用于大规模和超快的机器学习加速
- 批准号:
2105972 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
EAGER: SARE: Collaborative: Low Energy Secure Wireless Transceiversfor IoT Trusted Communications
EAGER:SARE:协作:用于物联网可信通信的低能耗安全无线收发器
- 批准号:
2029407 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SARE: Collaborative Research: Exploring and Mitigating Attacks of Millimeter-wave Radar Sensors in Autonomous Vehicles
EAGER:SARE:协作研究:探索和减轻自动驾驶汽车中毫米波雷达传感器的攻击
- 批准号:
2028872 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SARE: Multiferroic Shields for Smart Analog Security
EAGER:SARE:用于智能模拟安全的多铁屏蔽
- 批准号:
2029007 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER SARE: Physical-Layer Security of THz Communication Using Orbital Angular Momentum and Rapid Frequency Hopping
EAGER SARE:使用轨道角动量和快速跳频的太赫兹通信物理层安全
- 批准号:
2028824 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SARE: Dynamic Phase Center Antennas for Secure Sensing and Communications
EAGER:SARE:用于安全传感和通信的动态相位中心天线
- 批准号:
2028736 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SARE: Collaborative Research: Exploring and Mitigating Attacks of Millimeter-wave Radar Sensors in Autonomous Vehicles
EAGER:SARE:协作研究:探索和减轻自动驾驶汽车中毫米波雷达传感器的攻击
- 批准号:
2028863 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SARE: Real-Time Learning and Countering of Side-Channel Emissions to Enable Secure RF and Analog Microelectronics
EAGER:SARE:实时学习和对抗侧信道发射,以实现安全的射频和模拟微电子学
- 批准号:
2028893 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SARE: Security and Functionality of Energy Storage Devices from an External Electromagnetic Attack
EAGER:SARE:储能设备免受外部电磁攻击的安全性和功能
- 批准号:
2028992 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SARE: Collaborative: Low Energy Secure Wireless Transceivers for IoT Trusted Communications
EAGER:SARE:协作:用于物联网可信通信的低能耗安全无线收发器
- 批准号:
2029461 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SARE: In-Sensor Hardware-Software Co-design Methodology of the Hall Effect Sensors to Prevent and Contain the EMI Spoofing Attacks in the Analog-RF Systems
EAGER:SARE:霍尔效应传感器的传感器内硬件-软件协同设计方法,用于防止和遏制模拟射频系统中的 EMI 欺骗攻击
- 批准号:
2028269 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant














{{item.name}}会员




