RAPID: Rapid Assay for RNA Extraction and Concentration for COVID-19 Molecular Diagnostics

RAPID:用于 COVID-19 分子诊断的 RNA 提取和浓缩快速检测

基本信息

  • 批准号:
    2028909
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

Access to coronavirus testing is integral to the effort to curb and control the spread of the 2019 coronavirus disease (COVID-19). COVID-19 diagnostic tests currently implement a technique called reverse transcription-polymerase chain reaction (RT-PCR). This technique requires two reagent kits. The first is used to extract the genetic material, ribonucleic acid (RNA), from the coronavirus, and the second is used to amplify the RNA to enable its detection with RT-PCR. The current diagnostic crisis is due, in part, to shortages of the RNA extraction kits and the time required to extract the RNA using the kits. Increasing both the availability and time-efficiency of these kits is vital to improve testing accessibility and enhance the reliability of clinical diagnostics. In this project, a novel process for producing porous sorbent materials will be used to develop an alternative extraction kit for efficient and rapid extraction of nucleic acids from patient samples. The performance will be further optimized by studying the molecular mechanisms governing nucleic acid capture and release by the sorbents and applying this fundamental knowledge. The development and clinical validation of a novel extraction kit will be followed by mass production, addressing the current shortage and improving access to COVID-19 testing. The close collaboration between engineers developing the diagnostic technologies and clinicians implementing the prototypes, as enabled by this project, will streamline the transition of scientific knowledge into solutions that benefit the health and well-being of society. The project will also provide workforce development opportunities through training researchers in novel diagnostic techniques for coronaviruses.The goal of this project is to develop a novel, scalable approach to nucleic acid separation and concentration and mass-produce prototype kits for immediate implementation in clinical settings. The concept relies on the use of sorbent materials instead of the current filter- and silica column-based approach. Unlike filters that use pore size to physically separate the target (here nucleic acids) from the media, sorbents are a porous material that captures the target by chemical affinity and interactions. As a result, the use of a sorbent enables larger water flow rates, enhanced nucleic acid capture efficiency, and faster sample processing, and overcomes the need for multiple buffers or extraction steps. Functionalization of conventional filters with a combination of metal oxide nanoparticles and organosiloxane polymers will be used to produce the nucleic acid sorbent. The functionalization will be achieved by a new method for supported synthesis of nanoparticles by thermolysis and polymer conjugation. The efficiency of the sorbent will be assessed by the extraction and detection of nucleic acid using quantitative RT-PCR. Validation of the alternative sorbent kit will assess the effectiveness of the rapid separation and concentration of the novel coronavirus (SARS-CoV-2) RNA. The project will also explore the fundamentals of nucleic acid dynamics in porous sorbents as it relates to nucleic acid size, sorbent chemistry, porosity and pore size, and the effect of transport phenomena in porous media. Enhanced understanding of the factors that affect the retention, release, and transport of nucleic acids in porous media is critical to producing reliable and efficient nucleic acid extraction and detection kits and the development of other bio-separation processes. Training of postdoctoral researchers and graduate and undergraduate students will focus on how the combination of transdisciplinary collaboration and a clear understanding of the fundamental aspects can lead to disruptive technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
获得冠状病毒检测是遏制和控制2019冠状病毒病(COVID-19)传播的努力的一部分。COVID-19诊断测试目前采用一种称为逆转录聚合酶链反应(RT-PCR)的技术。该技术需要两个试剂盒。第一种用于从冠状病毒中提取遗传物质,即核糖核酸(RNA),第二种用于扩增RNA,以便用RT-PCR进行检测。目前的诊断危机部分是由于RNA提取试剂盒的短缺和使用试剂盒提取RNA所需的时间。提高这些试剂盒的可用性和时间效率对于改善检测可及性和提高临床诊断的可靠性至关重要。在该项目中,将使用一种生产多孔吸附材料的新型工艺来开发一种替代提取试剂盒,用于从患者样本中高效快速地提取核酸。通过研究吸附剂捕获和释放核酸的分子机制并应用这些基础知识,将进一步优化性能。新型提取试剂盒的开发和临床验证将随后进行大规模生产,解决目前的短缺问题,并改善COVID-19检测的可及性。通过该项目,开发诊断技术的工程师和实施原型的临床医生之间的密切合作将简化科学知识向有利于社会健康和福祉的解决方案的过渡。该项目还将通过培训研究人员掌握新的冠状病毒诊断技术来提供劳动力发展机会。该项目的目标是开发一种新的、可扩展的核酸分离和浓缩方法,并批量生产原型试剂盒,以便立即在临床环境中实施。该概念依赖于吸附剂材料的使用,而不是目前的过滤器和硅胶柱为基础的方法。与使用孔径大小从介质中物理分离目标(此处为核酸)的过滤器不同,吸附剂是通过化学亲和力和相互作用捕获目标的多孔材料。因此,吸附剂的使用能够实现更大的水流速、增强的核酸捕获效率和更快的样品处理,并且克服了对多个缓冲液或提取步骤的需要。用金属氧化物纳米颗粒和有机硅氧烷聚合物的组合官能化常规过滤器将用于生产核酸吸附剂。这种功能化将通过一种新的方法来实现,即通过热交换和聚合物共轭来支持纳米颗粒的合成。将通过使用定量RT-PCR提取和检测核酸来评估吸附剂的效率。替代吸附剂试剂盒的验证将评估快速分离和浓缩新型冠状病毒(SARS-CoV-2)RNA的有效性。该项目还将探索多孔吸附剂中核酸动力学的基本原理,因为它涉及核酸大小,吸附剂化学,孔隙率和孔径,以及多孔介质中传输现象的影响。增强对影响核酸在多孔介质中的保留、释放和运输的因素的理解对于生产可靠和有效的核酸提取和检测试剂盒以及开发其他生物分离过程至关重要。对博士后研究人员、研究生和本科生的培训将侧重于如何将跨学科合作与对基本方面的清晰理解相结合,从而产生颠覆性技术。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Abdennour Abbas其他文献

PTR-MS analysis of fungal VOCs for early detection of oak wilt
  • DOI:
    10.1007/s00216-025-05880-6
  • 发表时间:
    2025-04-24
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Anil Kumar Meher;Abdennour Abbas
  • 通讯作者:
    Abdennour Abbas

Abdennour Abbas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Abdennour Abbas', 18)}}的其他基金

Homogeneous Plasmonic Assays for Instantaneous Microbial Detection
用于瞬时微生物检测的均质等离子体分析
  • 批准号:
    1605191
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of a Next-generation Rapid Phenotypic Assay for Drug-Resistant M. tuberculosis
下一代耐药结核分枝杆菌快速表型检测方法的开发
  • 批准号:
    10734083
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
MetabolGut: a rapid assay platform to evaluate the impact drugs on lipid-handlingpathways and chylomicron-associated drug distribution using stem cell-drivenhuman absorptive enterocytes.
MetabolGut:一个快速检测平台,使用干细胞驱动的人体吸收性肠上皮细胞来评估药物对脂质处理途径和乳糜微粒相关药物分布的影响。
  • 批准号:
    10766493
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Rapid and robust assay for measurement of in vivo activity of chromatin-interacting proteins
用于测量染色质相互作用蛋白体内活性的快速而稳健的测定
  • 批准号:
    10759170
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Development of FAST-DOSE assay system for the rapid assessment of acute radiation exposure, individual radiosensitivity and injury in victims for a large-scale radiological incident
开发快速剂量测定系统,用于快速评估大规模放射事件受害者的急性辐射暴露、个体放射敏感性和损伤
  • 批准号:
    10784562
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
PA21259, SBIR, Phase I, Development of a rapid, direct from blood, phenotypic antimicrobial susceptibility assay
PA21259,SBIR,第一阶段,开发快速、直接来自血液的表型抗菌药物敏感性测定
  • 批准号:
    10602780
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Bench-top Reader and Aptamer-based Assay for Rapid, High-sensitivity Drug/Opiate Detection
用于快速、高灵敏度药物/阿片类药物检测的台式读数仪和基于适体的检测
  • 批准号:
    10760088
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Rapid, quantitative isothermal molecular assay for POC HIV-1 viral load monitoring using amplification nucleation site analysis
使用扩增成核位点分析进行 POC HIV-1 病毒载量监测的快速定量等温分子测定
  • 批准号:
    10759148
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Optimization of a rapid assay to quantify circulating glycosaminoglycans and identify vascular endotypes of sepsis
优化快速测定以量化循环糖胺聚糖并识别脓毒症的血管内型
  • 批准号:
    10725255
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Development of a High Throughput Assay for Rapid Screening of Congenital Cytomegalovirus Infection using Dried Blood Spots
开发利用干血斑快速筛查先天性巨细胞病毒感染的高通量检测方法
  • 批准号:
    10323195
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
Clinical application of a rapid assay for antibacterial susceptibility test of beta-lactams and carbapenems antibacterial agents using MALDI-TOF MS
MALDI-TOF MS快速测定β-内酰胺类和碳青霉烯类抗菌药物药敏试验的临床应用
  • 批准号:
    22K07406
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了