Development of a Next-generation Rapid Phenotypic Assay for Drug-Resistant M. tuberculosis

下一代耐药结核分枝杆菌快速表型检测方法的开发

基本信息

  • 批准号:
    10734083
  • 负责人:
  • 金额:
    $ 10.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-15 至 2028-04-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY The long turnaround time and need for specialised laboratories for conventional culture-based Mycobacterium tuberculosis drug-susceptibility testing (DST) regularly commits patients with drug-resistant tuberculosis (DR- TB) to months of potentially ineffective treatments. Current commercial molecular tuberculosis (TB) tests can rapidly identify DR-TB but are limited to testing resistance to a small number of drugs, excluding any new drugs. In theory, next-generation sequencing (NGS) could comprehensively identify resistance profiles, but is currently prohibitively expensive for routine use in high-burden, low-resource settings, and knowledge on drug-resistance mutations is still incomplete. To address this barrier, a fluorescence-based phenotypic assay will be developed to identify with high specificity resistance to drugs contained in the so-called “BPaLM” regimen, in clinical specimens. The overall goal of the current K43 application is to advance a novel phenotypic solution to transform the clinical management of DR-TB in high burden settings. The objectives of the K43 proposal are to 1) provide critical career advancing training and 2) advance and evaluate a rapid phenotypic workflow requiring minimal hands-on time within a high throughput TB laboratory. The sample collections and technical staff from an existing NIH-funded R01 (R01AI153213, PI: John Metcalfe, US primary mentor on this proposal) cluster randomized controlled trial evaluating the programmatic outcomes associated with benchtop NGS sequencing (the “TS Eliot study”) will be leveraged. Dr. Rob Warren, Distinguished Professor at Stellenbosch University and the Unit Director of the South African Medical Research Council Centre for Tuberculosis Research will serve as the LMIC mentor. Both Dr. Metcalfe and Dr. Warren have vast experience in molecular epidemiology, drug-resistant TB, and development of diagnostic tests. The project will have the following specific aims: 1) Advance a fluorescence- based assay as a rapid, high-throughput pDST, and 2) Perform preliminary diagnostic accuracy evaluation of the assay to detect phenotypic resistance directly in clinical TB specimens. In this study rapid, comprehensive DST methods will be established, which will continue to inform molecular assays for testing of new and repurposed drugs. At the end of this K43-funded mentored program, the applicant is expected to be able to lead a research project independently in the low-resource setting of South Africa. In future research projects based on the preliminary data generated in the current project, she will be able to answer key questions related to drug- resistant TB.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marisa Klopper其他文献

Marisa Klopper的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

吲哚磺酰脲类化合物的合成与生物测定
  • 批准号:
    29972043
  • 批准年份:
    1999
  • 资助金额:
    12.0 万元
  • 项目类别:
    面上项目
植物杀虫杀菌活性物质的生物测定及植物化学研究
  • 批准号:
    39270088
  • 批准年份:
    1992
  • 资助金额:
    4.0 万元
  • 项目类别:
    面上项目

相似海外基金

Establishment of a new biological assay using Hydra nematocyst deployment
利用水螅刺丝囊部署建立新的生物测定方法
  • 批准号:
    520728-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 10.59万
  • 项目类别:
    University Undergraduate Student Research Awards
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
  • 批准号:
    10368760
  • 财政年份:
    2017
  • 资助金额:
    $ 10.59万
  • 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
  • 批准号:
    10669539
  • 财政年份:
    2017
  • 资助金额:
    $ 10.59万
  • 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
  • 批准号:
    9570142
  • 财政年份:
    2017
  • 资助金额:
    $ 10.59万
  • 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
  • 批准号:
    9915803
  • 财政年份:
    2017
  • 资助金额:
    $ 10.59万
  • 项目类别:
COVID-19 Supplemental work: POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER).
COVID-19 补充工作:用于确定组织特异性吸收电离辐射剂量的护理点生物测定(生物剂量计)。
  • 批准号:
    10259999
  • 财政年份:
    2017
  • 资助金额:
    $ 10.59万
  • 项目类别:
Drug discovery based on a new biological assay system using Yeast knock-out strain collection
基于使用酵母敲除菌株收集的新生物测定系统的药物发现
  • 批准号:
    21580130
  • 财政年份:
    2009
  • 资助金额:
    $ 10.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
  • 批准号:
    300985-2004
  • 财政年份:
    2005
  • 资助金额:
    $ 10.59万
  • 项目类别:
    Postdoctoral Fellowships
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
  • 批准号:
    300985-2004
  • 财政年份:
    2004
  • 资助金额:
    $ 10.59万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了