EFRI DChem: Next-generation Low Global Warming Refrigerants

EFRI DChem:下一代低全球变暖制冷剂

基本信息

项目摘要

This EFRI DCHEM Distributed Chemical Manufacturing Project, named EARTH (Environmentally Applied Research Towards Hydrofluorocarbons), will use high-fidelity experiments, advanced computer simulations, and rigorous analytical methods in a coordinated framework to discover, synthesize, and test a new type of fluid called an ionic liquid that can be used to separate, recycle, and convert high global warming potential (GWP) refrigerant mixtures into safe products. The research will be conducted by a team of researchers located at the University of Kansas, the University of Notre Dame, Texas A&M University, and Rutgers University in collaboration Brookhaven National Lab, Oak Ridge National Lab and the National Institute of Standards and Technology and two industry partners (Chemours and Iolitec). The technical, economic, and environmental impacts of the project are considerable, given the large inventory of high GWP refrigerants that must be removed from the market. The market for recycling refrigerants is valued at more than a billion dollars and preventing the release of high-GWP refrigerants into the Earth’s atmosphere is equivalent to eliminating 175 million metric tons of CO2 (or annual emissions from 50 million cars). The project has the potential to economically benefit the refrigerants business and provide a distributed chemical manufacturing process for over 100 EPA certified recyclers in the U.S. A multi-faceted strategy will be employed to maximize dissemination and knowledge sharing with the broader scientific community. The four lead institutions are committed to providing a safe and inclusive environment and will recruit five PhD students, one post-doctoral researcher, and eight undergraduates. These researchers will be provided with cross-disciplinary training in science and engineering, attend STEM workshops and safety meetings, and intern in partnering universities, companies, and national labs.This project will provide the fundamental knowledge and innovation required to recycle and repurpose high-GWP refrigerants. The project is built upon the tunable solvation properties of ionic liquids (ILs) to realize the separation of azeotropic HFC mixtures that are not possible with other materials. The two primary goals are (1) designing chemical separations with high selectivity and capacity for complex systems and (2) understanding temporal changes that occur in chemical separation systems. Six fundamental aims will integrate property measurements and equation of state modeling (Aim 1), molecular simulations and design (Aim 2), advanced materials development (Aim 3), spectroscopy, scattering, and molecular interactions (Aim 4), process modeling and optimization (Aim 5), and design and implementation of lab-scale separation systems (Aim 6). Using proven experimental methods, the team will measure the thermophysical properties and vapor-liquid-equilibria required for designing an extractive distillation, absorption, or membrane process. High-throughput molecular dynamics and Monte Carlo simulations will be used to calculate the solubility (phase equilibrium), selectivity, and transport properties of a large number of refrigerant-IL systems using molecular force fields validated by experiment. New ILs with fluorinated ions will be synthesized to explore the “chemical” space connecting refrigerants and ILs. The team will utilize a number of techniques to determine refrigerant-IL interactions including: pulse-gradient-spin-echo (PG-SE) NMR experiments for measuring self-diffusion, nuclear Overhauser effect (NOE) experiments for studying intermolecular interactions, synchrotron X-ray scattering experiments for providing liquid structure factor S(Q), inverse Fourier sine transform for radial pair distribution function g(r), and quasi-elastic neutron scattering (QENS) for dynamical specific length scales as examples. The efficacy of the novel ILs designed in this work will be demonstrated via design optimization and a set of simulations and experiments for extractive distillation, absorption, and membrane separation processes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This EFRI DCHEM Distributed Chemical Manufacturing Project, named EARTH (Environmentally Applied Research Towards Hydrofluorocarbons), will use high-fidelity experiments, advanced computer simulations, and rigorous analytical methods in a coordinated framework to discover, synthesize, and test a new type of fluid called an ionic liquid that can be used to separate, recycle, and convert high global warming potential (GWP) refrigerant mixtures into safe 产品。这项研究将由位于堪萨斯大学,巴黎圣母院,德克萨斯农工大学和罗格斯大学合作布鲁克黑文国家实验室,橡树岭国家实验室和国家标准与技术协会和两个行业合作伙伴(Chemours and Iolitec)合作的研究人员进行。鉴于必须从市场上删除的高GWP制冷剂库存,该项目的技术,经济和环境影响很大。回收制冷剂的市场价值超过10亿美元,并防止将高GWP制冷剂释放到地球大气中等同于消除1.75亿吨二氧化碳(或从5000万辆汽车中的年度排放)。该项目有可能在经济上受益于制冷剂业务,并为过度提供分布式化学制造工艺。 100美国EPA认证的回收商将采用多方面的策略来最大程度地扩展与更广泛的科学界的传播和知识共享。这四个主要机构致力于提供安全和包容的环境,并将招募五名博士生,一名博士后研究员和八名本科生。这些研究人员将接受科学和工程学的跨学科培训,参加STEM研讨会和安全会议,并在合作大学,公司和国家实验室中实习。该项目将提供回收和改革高GWP制冷剂所需的基本知识和创新。该项目建立在离子液体(ILS)的可调溶液特性上,以实现其他材料无法使用的共旋转HFC混合物的分离。这两个主要目标是(1)设计具有高选择性和能力的化学分离,以及(2)理解化学分离系统中发生的临时变化。六个基本目的将整合状态建模(目标1),分子模拟和设计(AIM 2),先进材料开发(AIM 3),光谱,散射和分子相互作用(AIM 4),过程建模和优化(AIM 5)以及实验室分离系统的设计和设计(AIM 6)。使用经过验证的实验方法,该团队将测量设计提取性蒸馏,抽象或膜过程所需的热物理特性和蒸气 - 液位平衡。高通量分子动力学和蒙特卡洛模拟将使用通过实验验证的分子力场来计算大量制冷剂-IL系统的溶解度(相位平衡),选择性和转运性能。将合成带有氟离子的新IL,以探索连接制冷剂和IL的“化学”空间。 The team will utilize a number of techniques to determine refrigerant-IL interactions including: pulse-gradient-spin-echo (PG-SE) NMR experiments for measuring self-diffusion, nuclear Overhauser effect (NOE) experiments for studying intermolecular interactions, synchrotron X-ray scattering experiments for providing liquid structure factor S(Q), inverse Fourier sine transform for radial pair distribution function G(r)和准弹性中子散射(Qens)作为动态特定长度尺度的示例。在这项工作中设计的新型IL的效率将通过设计优化以及一组仿真和实验进行提取性提炼,抽象和膜分离过程。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力和更广泛影响的评估来评估通过评估来获得支持的珍贵。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
First Measurements for the Simultaneous Sorption of Difluoromethane and Pentafluoroethane Mixtures in Ionic liquids Using the Integral Mass Balance Method
使用积分质量平衡法首次测量离子液体中二氟甲烷和五氟乙烷混合物的同时吸附
  • DOI:
    10.1021/acs.iecr.2c00497
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Baca, Kalin R.;Broom, Darren P.;Roper, Mark G.;Benham, Michael J.;Shiflett, Mark B.
  • 通讯作者:
    Shiflett, Mark B.
Thermal conductivity of the ionic liquid [ HMIm ][ Tf2N ] with compressed carbon dioxide
离子液体[ HMIm ][ Tf2N ]与压缩二氧化碳的热导率
  • DOI:
    10.1002/aic.17635
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Al‐Barghouti, Karim S.;Scurto, Aaron M.
  • 通讯作者:
    Scurto, Aaron M.
Selective separation of HFC-32 from R-410A using poly(dimethylsiloxane) and a copolymer of perfluoro(butenyl vinyl ether) and perfluoro(2,2-dimethyl-1,3-dioxole)
  • DOI:
    10.1016/j.memsci.2022.120467
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Abby N. Harders;Erin R. Sturd;Julia E. Vallier;D. Corbin;Whitney R. White;C. Junk;M. Shiflett
  • 通讯作者:
    Abby N. Harders;Erin R. Sturd;Julia E. Vallier;D. Corbin;Whitney R. White;C. Junk;M. Shiflett
Solubility, Diffusivity, and Permeability of HFC-32 and HFC-125 in Amorphous Copolymers of Perfluoro(butenyl vinyl ether) and Perfluoro(2,2-dimethyl-1,3-dioxole)
HFC-32 和 HFC-125 在全氟(丁烯基乙烯基醚)和全氟(2,2-二甲基-1,3-间二氧杂环戊烯)无定形共聚物中的溶解度、扩散率和渗透性
  • DOI:
    10.1021/acs.iecr.2c04518
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Harders, Abby N.;Sturd, Erin R.;Wallisch, Luke;Schmidt, Hannes;Mendoza-Apodaca, Yuniva;Corbin, David R.;White, Whitney;Junk, Christopher P.;Shiflett, Mark B.
  • 通讯作者:
    Shiflett, Mark B.
Alchemical Free Energy and Hamiltonian Replica Exchange Molecular Dynamics to Compute Hydrofluorocarbon Isotherms in Imidazolium-Based Ionic Liquids
炼金术自由能和哈密顿复制品交换分子动力学计算咪唑基离子液体中的氢氟碳等温线
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Shiflett其他文献

Mark Shiflett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Shiflett', 18)}}的其他基金

REU SITE: IDEA Incubator for Porous Materials: Integrating Discovery, Engineering and Art
REU 站点:IDEA 多孔材料孵化器:融合发现、工程和艺术
  • 批准号:
    2243816
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
PFI-TT: Separation of azeotropic refrigerant mixtures using pilot-scale extractive distillation with ionic liquid entrainer
PFI-TT:使用带有离子液体夹带剂的中试规模萃取蒸馏分离共沸制冷剂混合物
  • 批准号:
    2213965
  • 财政年份:
    2022
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Planning Grant: Engineering Research Center for Environmentally Applied Refrigerant Technology Hub (EARTH)
规划资助:环境应用制冷剂技术中心工程研究中心(EARTH)
  • 批准号:
    2123852
  • 财政年份:
    2021
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
I-Corps: Reclaiming, separating, recycling, and repurposing fluorocarbon-based refrigerants
I-Corps:回收、分离、再循环和再利用碳氟化合物制冷剂
  • 批准号:
    2140448
  • 财政年份:
    2021
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
MRI: Acquisition of an Advanced Gravimetric Analyzer for Materials Research at KU-Lawrence
MRI:购买先进的重量分析仪用于 KU-Lawrence 的材料研究
  • 批准号:
    1920252
  • 财政年份:
    2019
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
REU SITE: IDEA Incubator for Porous Materials: Integrating Discovery, Engineering and Art
REU 站点:IDEA 多孔材料孵化器:融合发现、工程和艺术
  • 批准号:
    1852308
  • 财政年份:
    2019
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Collaborative Research: Development and Application of a Molecular and Process Design Framework for the Separation of Hydrofluorocarbon Mixtures
合作研究:氢氟碳化合物混合物分离的分子和工艺设计框架的开发和应用
  • 批准号:
    1917480
  • 财政年份:
    2019
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant

相似海外基金

EFRI DCheM: Making Cement Green by Low-Temperature Manufacturing of Calcium Hydroxide from Distributed Waste Sources
EFRI DCheM:通过从分布式废物源中低温制造氢氧化钙,使水泥变得绿色
  • 批准号:
    2132022
  • 财政年份:
    2021
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI DCheM: Distributed solar energy harvesting for carbon-free ammonia synthesis
EFRI DCheM:用于无碳氨合成的分布式太阳能收集
  • 批准号:
    2131709
  • 财政年份:
    2021
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI DCheM: Chemicals from Renewables Through Green Electrochemistry (ChaRGE)
EFRI DCheM:通过绿色电化学从可再生能源中生产化学品 (ChaRGE)
  • 批准号:
    2132200
  • 财政年份:
    2021
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI DCheM: Re-Engineering the Nitrogen Cycle: Distributed Electrochemical Nitrogen Refineries for Ammonia Synthesis and Water Purification
EFRI DCheM:重新设计氮循环:用于氨合成和水净化的分布式电化学氮精炼厂
  • 批准号:
    2132007
  • 财政年份:
    2021
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI DCheM: Distributed Ribonucleic Acid (RNA) Manufacturing via Continuous Enzymatic Reaction and Separation in Biphasic Liquid Media
EFRI DCheM:通过双相液体介质中的连续酶促反应和分离进行分布式核糖核酸 (RNA) 制造
  • 批准号:
    2132141
  • 财政年份:
    2021
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了