EFRI DCheM: Distributed Ribonucleic Acid (RNA) Manufacturing via Continuous Enzymatic Reaction and Separation in Biphasic Liquid Media
EFRI DCheM:通过双相液体介质中的连续酶促反应和分离进行分布式核糖核酸 (RNA) 制造
基本信息
- 批准号:2132141
- 负责人:
- 金额:$ 200万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Vaccines based on messenger RNA (mRNA) have played a crucial role in changing the trajectory of the COVID-19 pandemic and will become increasingly important in developing new vaccines for future diseases. RNA-based therapies are also projected to have a major impact in formulating new cancer treatments as well as regenerative medicines that enable repair and regrowth of damaged tissues. Despite their proven effectiveness and enormous potential, RNA-based therapies are notoriously difficult to distribute. Because these therapeutics are inherently fragile, they require ultracold storage and shipping. This project will overcome this challenge by developing a novel technology to produce mRNA on-site and on-demand in any location while protecting the product from degradation, obviating the need for ultracold storage and transportation. Furthermore, this technology will lower the cost of production and distribution, minimize energy consumption, and reduce greenhouse gas emissions by simplifying the vaccine supply chain. Specifically, the proposed project will develop a transformative process for distributed ribonucleic acid manufacturing (DReAM) based on a novel approach to produce and stabilize mRNA in a single processing step. DReAM exploits reactive membranes that contain a water layer and an oil layer. The mRNA is enzymatically produced in the water and then extracted into the oil, where the mRNA is stable and protected from degradation. The DReAM technology can further serve national interests by enabling on-site production of other pharmaceutical products in a wide range of settings, supporting space exploration, national defense, and recovery from natural disasters. This project will draw graduate and undergraduate students from geographically diverse locations, with emphasis on institutions serving students underrepresented in STEM, to grow and diversify the doctoral STEM workforce. Furthermore, the team will focus on disseminating DReAM’s vision to K-12 students and the public to generate interest in STEM-related careers. The DReAM team will create a framework that identifies the expertise and infrastructure needed to maximize economic growth and employment opportunities. More importantly, success of the DReAM effort will address the grand challenge that has stymied progress in delivering advanced healthcare more efficiently and equitably. Our vision is to disrupt the field of RNA manufacturing and distribution while impacting the national and global need for equitable distribution and administration of life-saving therapeutics, including critical mRNA-based vaccines. This EFRI project will develop a transformative process for distributed ribonucleic acid manufacturing (DReAM) using bicontinuous interfacially-jammed emulsion gels (bijels), a microstructured membrane developed by members of the research team, which allow for simultaneous RNA synthesis and separation. The DReAM process will enable distributed continuous production of RNA on-demand and shift the current paradigm in the pharmaceutical industry where centralized batch processes remain the norm. We propose to leverage the inherent stability of DNA as a genetic template to produce mRNA at the oil-aqueous interface through the activity of RNA polymerase while feeding DNA from the aqueous phase. Upon transcription of the DNA, the mRNA will be selectively sequestered in the oil phase via lipid-mediated interphase transfer. Partitioning of the mRNA into the organic phase will isolate mRNA from the reagent stream in situ and stabilize mRNA against deleterious hydrolysis, obviating the need for cryogenic transportation, which will dramatically transform the field. The bioequivalence of mRNA produced by DReAM will be confirmed through in vitro translation and cell-based assays. To realize this vision, experimental, computational, and modeling approaches will be integrated to address the effects of crowding of surface-active particles and molecules on interfacial dynamics, the activity of nanoparticle-immobilized enzymes at the fluid-fluid interface as affected by the interface microstructure, and the mechanisms for transport and partitioning of biomacromolecules in chemically heterogeneous, topologically complex structures. Molecular modeling will be integrated into all aspects of the project including fundamental characterization, macroscopic modeling, and control of the DReAM process.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基于Messenger RNA(mRNA)的疫苗在改变COVID-19大流行的轨迹中起着至关重要的作用,并且在开发新的未来疾病疫苗方面将变得越来越重要。基于RNA的疗法还预计将对制定新的癌症治疗以及可再生的药物产生重大影响,从而可以修复和改革受损的组织。尽管它们具有公认的有效性和巨大的潜力,但众所周知,基于RNA的疗法很难分发。由于这些治疗学本质上是脆弱的,因此它们需要超速存储和运输。该项目将通过开发一种新型技术来克服这一挑战,以在任何位置生产MRNA,同时保护产品免受降级,从而消除了对超速存储和运输的需求。此外,该技术将通过简化疫苗供应链来降低生产和分配成本,最大程度地减少能源消耗,并减少温室气体排放。具体而言,拟议的项目将基于一种新的方法来制定分布式核糖核酸制造(DREAP)的变革过程,以在单个处理步骤中生产和稳定mRNA。 Dream利用了包含水层和油层的反应性机制。 mRNA在水中酶促产生,然后提取到油中,在该油中mRNA稳定并免受降解。梦想技术可以通过在各种环境中实现现场生产其他药品,从而支持太空探索,国防和自然灾害中的复苏,从而进一步服务于国家利益。该项目将吸引来自地理上不同地点的毕业生和本科生,重点是为STEM中人数不足的学生提供服务,以增长和多样化博士STEM劳动力。此外,该团队将专注于将梦想的愿景传播给K-12学生和公众,以引起对与STEM相关的职业的兴趣。梦想团队将创建一个框架,以确定最大化经济增长和就业机会所需的专业知识和基础设施。更重要的是,梦想中的成功将解决巨大的挑战,这在更有效,平等地提供高级医疗保健方面阻碍了进步。我们的愿景是破坏RNA制造和分销领域,同时影响国家和全球对挽救生命疗法的公平分配和管理的需求,包括基于关键的mRNA疫苗。这个EFRI项目将使用双连接界面界面乳胶凝胶(BIJELS)开发一个用于分布式缎带酸制造(DREAM)的变革过程,这是由研究团队成员开发的微观结构膜,可以简单地合成RNA合成和分离。梦想过程将实现RNA按需的分布持续生产,并改变当前的制药行业范式,在该行业中,集中批量的过程仍然是常态。我们建议利用DNA作为遗传模板的遗传稳定性通过RNA聚合酶的活性在油相中从水相喂食DNA的活性在油性界面上产生mRNA。 DNA转录后,将通过脂质介导的相对转移在油相中选择性隔离。将mRNA分配到有机相中将使mRNA与原位的试剂流分离,并稳定mRNA,以防止有害水解,从而避免了对低温转运的需求,这将极大地改变该场。 Dream产生的mRNA的生物等效性将通过体外翻译和基于细胞的测定得到证实。要实现这种视野,实验,计算和建模方法,将集成以解决表面活性颗粒和分子对界面动力学的拥挤,纳米颗粒 - 毫米变酶在流体 - 流体界面对界面微观结构的影响,以及界面微观结构和分节隔离的构造构造的动物界面的活性拓扑复杂的结构。分子建模将集成到项目的各个方面,包括基本特征,宏观建模和对梦想过程的控制。该奖项反映了NSF的法定任务,并通过评估基金会的智力优点和更广泛的影响来审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daeyeon Lee其他文献
Change in Stripes for Cholesteric Shells via Anchoring in Moderation
通过适度锚定改变胆甾壳的条纹
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Lisa Tran;M. Lavrentovich;Guillaume Durey;A. Darmon;M. Haase;Ningwei Li;Daeyeon Lee;K. Stebe;R. Kamien;T. López - 通讯作者:
T. López
Ellipsoidal particles encapsulated in droplets.
椭圆形颗粒封装在液滴中。
- DOI:
10.1039/c4sm00302k - 发表时间:
2014 - 期刊:
- 影响因子:3.4
- 作者:
M. Norton;Teresa Brugarolas;Jonathan Chou;Daeyeon Lee;H. Bau - 通讯作者:
H. Bau
Moldable Perfluoropolyether–Polyethylene Glycol Networks with Tunable Wettability and Solvent Resistance for Rapid Prototyping of Droplet Microfluidics
具有可调润湿性和耐溶剂性的可模压全氟聚醚-聚乙二醇网络,用于液滴微流体的快速原型制作
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Heon;Syung Hun Han;S. Yadavali;Junhyong Kim;D. Issadore;Daeyeon Lee - 通讯作者:
Daeyeon Lee
Synthesis and mechanical response of disordered colloidal micropillars.
无序胶体微柱的合成和机械响应。
- DOI:
10.1039/c3cp55422h - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
D. Strickland;Lei Zhang;Yun;D. Magagnosc;Daeyeon Lee;D. Gianola - 通讯作者:
D. Gianola
Ultrahigh Throughput On‐Chip Synthesis of Microgels with Tunable Mechanical Properties
具有可调机械性能的微凝胶的超高通量片上合成
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Jingyu Wu;S. Yadavali;D. Issadore;Daeyeon Lee - 通讯作者:
Daeyeon Lee
Daeyeon Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daeyeon Lee', 18)}}的其他基金
Conference: 2024 Colloidal, Macromolecular and Polyelectrolyte Solutions Gordon Research Conference and Seminar
会议:2024胶体、高分子和聚电解质解决方案戈登研究会议及研讨会
- 批准号:
2331084 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
NSF-BSF: Interfacial freezing and shape transformations in surfactant/particle-co-stabilized emulsions
NSF-BSF:表面活性剂/颗粒共稳定乳液中的界面冻结和形状转变
- 批准号:
2110611 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Effect of Extreme Nanoconfinement on the Thermodynamics and Transport Phenomena in Multiphasic Nanocomposite Coatings
极端纳米约束对多相纳米复合涂层热力学和传输现象的影响
- 批准号:
1933704 - 财政年份:2019
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Complexation of charged polymers and nanoparticles at all aqueous interfaces for functional membrane formation
带电聚合物和纳米颗粒在所有水界面处络合以形成功能性膜
- 批准号:
1705891 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Nanostructured Composite Coatings to Harden and Toughen Polymer Surfaces
用于硬化和增韧聚合物表面的纳米结构复合涂层
- 批准号:
1662695 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
GOALI: Single droplet level understanding of phase inversion emulsification to enable continuous processing
GOALI:单液滴水平了解转相乳化以实现连续加工
- 批准号:
1604536 - 财政年份:2016
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
SNM: Scalable Manufacturing of Nanostructured Membranes for Fracking Wastewater Treatment
SNM:用于水力压裂废水处理的纳米结构膜的可规模化制造
- 批准号:
1449337 - 财政年份:2014
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Collaborative Research: Optimal Design and Operation of Dye Sensitized Solar Cells Using an Integrated Strategy Involving First-Principles Modeling, Synthesis, and Characterization
合作研究:采用涉及第一性原理建模、合成和表征的综合策略优化染料敏化太阳能电池的设计和运行
- 批准号:
1234993 - 财政年份:2012
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
ACS Symposium on Emulsions, Bubbles and Foams: Fundamentals and Applications, New Orleans, Louisiana, April 7th - 11th, 2013
ACS 乳液、气泡和泡沫研讨会:基础知识和应用,路易斯安那州新奥尔良,2013 年 4 月 7 日至 11 日
- 批准号:
1219323 - 财政年份:2012
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
CAREER: Understanding Electrostatic Interactions in Non-Polar Media for Generation of Nanostructured Thin Films
职业:了解非极性介质中的静电相互作用以生成纳米结构薄膜
- 批准号:
1055594 - 财政年份:2011
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
相似海外基金
EFRI DCheM: Making Cement Green by Low-Temperature Manufacturing of Calcium Hydroxide from Distributed Waste Sources
EFRI DCheM:通过从分布式废物源中低温制造氢氧化钙,使水泥变得绿色
- 批准号:
2132022 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI DCheM: Distributed solar energy harvesting for carbon-free ammonia synthesis
EFRI DCheM:用于无碳氨合成的分布式太阳能收集
- 批准号:
2131709 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI DCheM: Re-Engineering the Nitrogen Cycle: Distributed Electrochemical Nitrogen Refineries for Ammonia Synthesis and Water Purification
EFRI DCheM:重新设计氮循环:用于氨合成和水净化的分布式电化学氮精炼厂
- 批准号:
2132007 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI DCheM: Distributed Manufacturing of Personalized Medicines
EFRI DCheM:个性化药品的分布式制造
- 批准号:
2029139 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI DCheM: Distributed Photosynthetic Recovery of Livestock Waste Nutrients for Sustainable Production of Fertilizers
EFRI DCheM:畜牧废物养分的分布式光合回收用于肥料的可持续生产
- 批准号:
2132036 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant