Nonlinear Dynamics of Confined Interfaces: Beyond Linear Analysis and Towards Control

受限界面的非线性动力学:超越线性分析并走向控制

基本信息

  • 批准号:
    2029540
  • 负责人:
  • 金额:
    $ 38.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

From the acrobatics of fluids that respond to magnetic fields, to the extraction of oil from the Earth, to electrode operation in consumer device batteries, the motion of interfaces must be modeled, analyzed and controlled towards achieving a desired flow pattern, improving the efficiency of energy recovery, or assuring safety. This award will support fundamental scientific research that will contribute new knowledge and understanding of the dynamics of interfaces between fluids. The outcomes of this research program could become the building blocks for new approaches towards the precise manipulation of spreading and confined layers of fluids, which is needed to advance additive manufacturing (also called 3D printing) processes, as well as lab-on-a-chip devices that use motion of droplets (closed fluid-fluid interfaces) to perform chemical diagnostics. Therefore, this award will promote both the progress of a scientific field, as well as potentially contribute to the science behind new technologies that benefit the U.S. economy and society, thus advancing national prosperity. Furthermore, the research will engage undergraduate, graduate and postdoctoral researchers within the PI's established culture of mentorship and diversity efforts, towards championing scientific excellence and broadening participation in this research field.Fluid interfaces do not always move and deform in an orderly fashion. They can be unstable, and their shapes can be unpredictable from the inputs to the system. The current research on such instabilities has focused on the initiation stage of the unpredictable behavior, which is called the linear regime. At the same time, the dynamics are influenced by multiple physical effects, whose coupled influence remains relatively unexplored. To address these knowledge gaps, the fundamental research will derive mathematical models and construct numerical methods to understand the late stage (termed nonlinear) time evolution of interfaces, eventually yielding methods to manipulate instability. Specifically, the research team will: (i) derive sharp-interface mathematical models of the dynamics of immiscible fluid-fluid interfaces confined in nonstandard Hele-Shaw geometries, including multiphysics interactions due to domain boundary motion and non-invasive forcing via magnetic fields; (ii) construct efficient numerical methods for Lagrangian sharp-interface tracking, based on the vortex sheet method, to enable analysis of the nonlinear evolution of interfaces, including their ability to sustain permanent traveling excitations (solitons); and (iii) harness (i) and (ii), in conjunction with optimization and control strategies from dynamical systems theory, to update the external forcing of the confined system on-the-fly and, thus, achieve pre-determined interfacial shapes and motions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从响应磁场的流体的技巧,到从地球提取石油,再到消费设备电池中的电极操作,必须对界面的运动进行建模,分析和控制,以实现所需的流动模式,提高能量回收的效率或确保安全。该奖项将支持基础科学研究,这将有助于新的知识和流体之间的界面动力学的理解。这项研究计划的成果可能成为精确操纵流体扩散和限制层的新方法的基石,这是推进增材制造(也称为3D打印)过程所需的,以及使用液滴运动(封闭的流体-流体界面)进行化学诊断的芯片实验室设备。因此,该奖项将促进科学领域的进步,并可能为有利于美国经济和社会的新技术背后的科学做出贡献,从而促进国家繁荣。此外,该研究将在PI既定的指导和多样性努力文化中吸引本科生,研究生和博士后研究人员,以支持科学卓越并扩大该研究领域的参与。流体界面并不总是以有序的方式移动和变形。它们可能是不稳定的,并且它们的形状可能无法从系统的输入中预测。目前对这种不稳定性的研究主要集中在不可预测行为的初始阶段,即线性区域。与此同时,动力学受到多种物理效应的影响,其耦合影响仍然相对未被探索。为了解决这些知识差距,基础研究将推导数学模型并构建数值方法来理解界面的后期(称为非线性)时间演化,最终产生操纵不稳定性的方法。具体而言,研究小组将:(i)推导出非标准Hele-Shaw几何形状中不混溶流体-流体界面动力学的尖锐界面数学模型,包括由于域边界运动和通过磁场的非侵入性强迫引起的多物理场相互作用;(ii)根据涡面法,为拉格朗日锐界面跟踪建立有效的数值方法,能够分析界面的非线性演化,包括其承受永久移动激励的能力(solitons);以及(iii)利用(i)和(ii),结合来自动力系统理论的优化和控制策略,以动态地更新受限系统的外部强迫,因此,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Christov expansion method for nonlocal nonlinear evolution equations
非局部非线性演化方程的 Christov 展开法
Long-wave equation for a confined ferrofluid interface: periodic interfacial waves as dissipative solitons
  • DOI:
    10.1098/rspa.2021.0550
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zongxin Yu;I. Christov
  • 通讯作者:
    Zongxin Yu;I. Christov
Tuning a magnetic field to generate spinning ferrofluid droplets with controllable speed via nonlinear periodic interfacial waves
通过非线性周期性界面波调节磁场以产生速度可控的旋转铁磁流体液滴
  • DOI:
    10.1103/physreve.103.013103
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Yu, Zongxin;Christov, Ivan C.
  • 通讯作者:
    Christov, Ivan C.
Reduced modelling and global instability of finite-Reynolds-number flow in compliant rectangular channels
  • DOI:
    10.1017/jfm.2022.802
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Xiaojia Wang;I. Christov
  • 通讯作者:
    Xiaojia Wang;I. Christov
Oscillatory flows in compliant conduits at arbitrary Womersley number
  • DOI:
    10.1103/physrevfluids.8.124102
  • 发表时间:
    2023-12-20
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Pande,Shrihari D.;Wang,Xiaojia;Christov,Ivan C.
  • 通讯作者:
    Christov,Ivan C.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ivan Christov其他文献

Ivan Christov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ivan Christov', 18)}}的其他基金

CDS&E: Multiscale Computational Modeling of Flow-Induced Mechanical Deformation via Nonlocal Formulations
CDS
  • 批准号:
    2245343
  • 财政年份:
    2023
  • 资助金额:
    $ 38.77万
  • 项目类别:
    Standard Grant
Microscale Fluid--Structure Interactions: Towards a Predictive Theory of Their Dynamic Response
微尺度流体-结构相互作用:动态响应的预测理论
  • 批准号:
    1705637
  • 财政年份:
    2017
  • 资助金额:
    $ 38.77万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1104047
  • 财政年份:
    2011
  • 资助金额:
    $ 38.77万
  • 项目类别:
    Fellowship Award

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Collaborative Research: The role of temporally varying specific storage on confined aquifer dynamics
合作研究:随时间变化的特定存储对承压含水层动态的作用
  • 批准号:
    2242365
  • 财政年份:
    2024
  • 资助金额:
    $ 38.77万
  • 项目类别:
    Standard Grant
Collaborative Research: The role of temporally varying specific storage on confined aquifer dynamics
合作研究:随时间变化的特定存储对承压含水层动态的作用
  • 批准号:
    2242366
  • 财政年份:
    2024
  • 资助金额:
    $ 38.77万
  • 项目类别:
    Standard Grant
NSF-BSF: Dynamics of flowing particles in soft confined systems
NSF-BSF:软约束系统中流动粒子的动力学
  • 批准号:
    2328628
  • 财政年份:
    2023
  • 资助金额:
    $ 38.77万
  • 项目类别:
    Standard Grant
Structure and dynamics of ionic liquids confined in nano-pores of metal-organic framework
金属有机骨架纳米孔内离子液体的结构与动力学
  • 批准号:
    23H01788
  • 财政年份:
    2023
  • 资助金额:
    $ 38.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
NSF-DFG Confine: Structure, dynamics, and electrochemical stability of concentrated electrolytes in confined spaces
NSF-DFG Confine:受限空间中浓电解质的结构、动力学和电化学稳定性
  • 批准号:
    2223407
  • 财政年份:
    2022
  • 资助金额:
    $ 38.77万
  • 项目类别:
    Standard Grant
Quantum dynamics of confined molecules
受限分子的量子动力学
  • 批准号:
    572947-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 38.77万
  • 项目类别:
    University Undergraduate Student Research Awards
Novel Quantum Phase Transitions and Non-Equilibrium Dynamics in Lattice-Confined Spinor Condensates
晶格限制旋量凝聚中的新型量子相变和非平衡动力学
  • 批准号:
    1912575
  • 财政年份:
    2019
  • 资助金额:
    $ 38.77万
  • 项目类别:
    Continuing Grant
Cooperative Dynamics of Guest Molecules Confined in Nano-space of Polymer Cocrystals and the Exploration as a Functional Material
聚合物共晶纳米空间中客体分子的协同动力学及其功能材料的探索
  • 批准号:
    19K05601
  • 财政年份:
    2019
  • 资助金额:
    $ 38.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantum dynamics of confined molecules
受限分子的量子动力学
  • 批准号:
    548310-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 38.77万
  • 项目类别:
    University Undergraduate Student Research Awards
Elucidation of surface effect on molecular dynamics in confined space
阐明有限空间内分子动力学的表面效应
  • 批准号:
    18K11932
  • 财政年份:
    2018
  • 资助金额:
    $ 38.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了