CDS&E: Multiscale Computational Modeling of Flow-Induced Mechanical Deformation via Nonlocal Formulations
CDS
基本信息
- 批准号:2245343
- 负责人:
- 金额:$ 38.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Computational and Data-Enabled Science and Engineering (CDS&E) project will contribute to the advancement of national prosperity and economic welfare by enabling predictive simulations of complex mechanical problems with relevance to biomedicine (how to adhere layers of tissue together after surgery) and the development of coatings and sealants (how to ensure dried paint remains attached to a surface). Most have experienced the commonplace challenge of peeling off a piece of tape from a surface or attempting to lift a thin object stuck to a wet glass tabletop. From paint and do-it-yourself home repair to diapers and hygiene products, soft coatings involve the fluid-layer-mediated adhesion of an elastic material to a rigid substrate. The ability to accurately simulate the adhesion and debonding processes, including material failure, in real-world scenarios remains a challenge. The fundamental research supported by this grant will promote the progress of science by developing theories that will lead to fast and accurate simulation tools capable of handling the complex interaction between thin layers of fluids and soft, elastic surfaces that can adhere, detach, or even tear apart due to the flow of the fluid. Undergraduate and graduate students will be trained in computational mechanics, and planned interactions with an HBCU will increase the diversity of individuals pursuing higher degrees, and ultimately of the STEM workforce.This grant will enable predictive, multiscale simulation of flow-induced mechanical deformation using nonlocal formulations of continuum mechanics via the construction of tractable 1D models coupling nonlocal mechanical response to fluid flow, leading to creation of 3D solvers for peridynamic equations, employing novel finite-volume discretizations that permit the simulation of two-way coupled fluid-structure interactions featuring nonlocal mechanics. Using recent developments in mathematical analysis, such as weakly-singular kernels for defining nonlocal generalization of the Laplacian, nonlocal 1D models will be derived to understand the fundamentals of flow-driven delamination of nanosheets where classical continuum mechanics approaches fail. Ideas from the finite-volume implementation of meshless (particle) methods will be used to design and build 3D computational tools upon standardized, open-source frameworks that can be made freely available to researchers and practitioners. The resulting computational tools will be capable of bridging scales (from the mesoscale to the continuum scale via nonlocal theories) to enable predictive simulation of flow coupled to nonlocal mechanics relevant to applications such as soft adhesion, additive manufacturing and biophysics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个计算和数据支持的科学与工程(CDS E)项目将有助于促进国家繁荣和经济福利,通过实现与生物医学相关的复杂机械问题的预测模拟(如何在手术后将组织层粘附在一起)以及涂层和密封剂的开发(如何确保干燥的油漆仍然附着在表面上)。大多数人都经历过从表面剥离一块胶带或试图提起粘在湿玻璃桌面上的薄物体的常见挑战。从油漆和自己动手的家庭维修到尿布和卫生用品,软涂层涉及弹性材料与刚性基底的流体层介导的粘附。在真实场景中准确模拟粘附和剥离过程(包括材料失效)的能力仍然是一个挑战。该基金支持的基础研究将通过开发理论来促进科学的进步,这些理论将导致快速准确的模拟工具,这些工具能够处理薄层流体和柔软弹性表面之间的复杂相互作用,这些表面可以粘附,分离甚至撕裂由于流体的流动。本科生和研究生将接受计算力学方面的培训,与HBCU的计划互动将增加追求更高学位的个人的多样性,最终增加STEM劳动力的多样性。该资助将通过构建易处理的一维模型,将非局部机械响应耦合到流体流动,使用连续介质力学的非局部公式,实现流动引起的机械变形的预测性多尺度模拟,导致创建的三维解算器的peridendicic方程,采用新的有限体积离散,允许模拟双向耦合的流体-结构相互作用,具有非局部力学。使用数学分析的最新发展,如弱奇异内核定义非局部广义的拉普拉斯算子,非局部1D模型将推导出理解经典连续介质力学方法失败的纳米片流动驱动分层的基本原理。来自无网格(粒子)方法的有限体积实现的想法将用于在标准化的开源框架上设计和构建3D计算工具,这些框架可以免费提供给研究人员和从业者。由此产生的计算工具将能够桥接尺度(通过非局部理论从中尺度到连续尺度),以实现与软附着、增材制造和生物物理学等应用相关的非局部力学耦合的流动预测模拟。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ivan Christov其他文献
Ivan Christov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ivan Christov', 18)}}的其他基金
Nonlinear Dynamics of Confined Interfaces: Beyond Linear Analysis and Towards Control
受限界面的非线性动力学:超越线性分析并走向控制
- 批准号:
2029540 - 财政年份:2020
- 资助金额:
$ 38.66万 - 项目类别:
Standard Grant
Microscale Fluid--Structure Interactions: Towards a Predictive Theory of Their Dynamic Response
微尺度流体-结构相互作用:动态响应的预测理论
- 批准号:
1705637 - 财政年份:2017
- 资助金额:
$ 38.66万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Computational Design of Fluorescent Proteins with Multiscale Excited State QM/MM Methods
职业:利用多尺度激发态 QM/MM 方法进行荧光蛋白的计算设计
- 批准号:
2338804 - 财政年份:2024
- 资助金额:
$ 38.66万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148678 - 财政年份:2023
- 资助金额:
$ 38.66万 - 项目类别:
Standard Grant
Integrated Multiscale Computational and Experimental Investigations on Fracture of Additively Manufactured Polymer Composites
增材制造聚合物复合材料断裂的综合多尺度计算和实验研究
- 批准号:
2309845 - 财政年份:2023
- 资助金额:
$ 38.66万 - 项目类别:
Standard Grant
Multiscale Computational Microscopy of HIV-1
HIV-1 的多尺度计算显微镜
- 批准号:
10756808 - 财政年份:2023
- 资助金额:
$ 38.66万 - 项目类别:
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2328533 - 财政年份:2023
- 资助金额:
$ 38.66万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148646 - 财政年份:2023
- 资助金额:
$ 38.66万 - 项目类别:
Standard Grant
CAREER: A Multiscale Computational and Experimental Framework to Elucidate the Biomechanics of Infant Growth
职业生涯:阐明婴儿生长生物力学的多尺度计算和实验框架
- 批准号:
2238859 - 财政年份:2023
- 资助金额:
$ 38.66万 - 项目类别:
Standard Grant
A Multiscale Computational Analysis of Defect-assisted Ionic Transport in Plastically Deformed Solid Oxides
塑性变形固体氧化物中缺陷辅助离子输运的多尺度计算分析
- 批准号:
2322675 - 财政年份:2023
- 资助金额:
$ 38.66万 - 项目类别:
Standard Grant
Multiscale computational frameworks for integrating large-scale cortical dynamics, connectivity, and behavior
用于集成大规模皮层动力学、连接性和行为的多尺度计算框架
- 批准号:
10840682 - 财政年份:2023
- 资助金额:
$ 38.66万 - 项目类别:
ERI: A Computational and Experimental Approach to Establishing Multiscale and Multiphasic Structure-Function Mechanisms of Muscle Stiffness
ERI:建立肌肉僵硬多尺度、多相结构功能机制的计算和实验方法
- 批准号:
2301653 - 财政年份:2023
- 资助金额:
$ 38.66万 - 项目类别:
Standard Grant