Effect of Crack-Parallel Stresses on Fracture of Concrete and Other Quasibrittle Materials

裂纹平行应力对混凝土和其他准脆性材料断裂的影响

基本信息

  • 批准号:
    2029641
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

This research will address prediction and control of fracture in concrete, with implications in other heterogenous materials such as rocks, fiber composites, ceramics, sea ice, rigid foams, shale, various bio-, biomimetic and printed architectured materials. Concrete fracture is a serious safety concern generally, and particularly during earthquakes. Fracture is always accompanied by cracking which, in the long term, leads to environmental degradation as well. Realistic fracture predictions based on standardized laboratory tests and computer simulations is therefore critical to strong and durable civil infrastructure. Recent research reveals that crack tips in quasibrittle materials are surrounded by a wide zone of visually undetectable microcracking damage, which controls crack growth yet is very sensitive to stresses that are parallel to the cracks. The effects of these crack-parallel stresses are currently unknown. This research will devise a new type of laboratory test, which can measure the changes of energy required for fracture growth at various crack-parallel stress levels. Testing will be conducted to better understand the effect of crack-parallel stresses on normal and high-strength concretes as well as fiber-reinforced concretes, and the results will be used to formulate a new mathematical model for quasibrittle fracture. The crack-parallel stress effects have gone unnoticed because they do not appear in the currently standardized fracture tests and are not thermodynamic variables in existing linear elastic fracture mechanics and cohesive crack models. The key idea of this research is a modification of the notched three-point bend test with four crucial features: 1) plastic support pads at notch mouth introduce constant notch-parallel compression; 2) the end supports installed with gaps engage only when the pads are yielding; 3) the test setup switches from one statically determinate configuration to another, allowing unambiguous interpretation; and 4) the size effect method, most effective for fracture energy testing, is made possible. A finite element crack band model with a tensorial damage softening law will be developed and calibrated by optimal fitting of the test results. Finally, a multiscale model that incorporates mesoscale mechanisms of frictional slip, microcrack opening, interlock and splitting causing the crack-parallel stress effects will be devised. The results are expected to transform fracture mechanics of quasibrittle materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究将解决混凝土断裂的预测和控制问题,并涉及其他非均质材料,如岩石,纤维复合材料,陶瓷,海冰,硬质泡沫,页岩,各种生物,仿生和印刷建筑材料。混凝土断裂通常是一个严重的安全问题,特别是在地震期间。断裂总是伴随着开裂,从长远来看,这也会导致环境退化。因此,基于标准化实验室测试和计算机模拟的现实断裂预测对于坚固耐用的民用基础设施至关重要。最近的研究表明,在准脆性材料的裂纹尖端是由一个很宽的区域的视觉不可检测的微裂纹损伤,控制裂纹的扩展,但非常敏感的应力是平行的裂纹包围。这些平行裂纹应力的影响目前尚不清楚。这项研究将设计一种新型的实验室测试,它可以测量在不同的裂纹平行应力水平下的断裂扩展所需的能量的变化。将进行测试,以更好地了解正常和高强度混凝土以及纤维增强混凝土的裂纹平行应力的影响,其结果将被用来制定一个新的准脆性断裂的数学模型。平行裂纹应力效应没有被注意到,因为它们没有出现在目前标准化的断裂试验中,也不是现有线弹性断裂力学和内聚裂纹模型中的热力学变量。本研究的核心思想是对缺口三点弯曲试验的改进,它具有四个关键特征:1)缺口口处的塑料支撑垫引入恒定的缺口平行压缩; 2)安装有间隙的端部支撑仅在垫屈服时接合; 3)试验装置从一种静定构型切换到另一种静定构型,允许明确的解释;(4)使断裂能测试最有效的尺寸效应方法成为可能。将建立一个具有张量损伤软化规律的有限元裂纹带模型,并通过试验结果的最佳拟合进行标定。最后,一个多尺度模型,结合细观机制的摩擦滑动,微裂纹的开放,联锁和分裂造成的裂纹平行应力效应将被设计。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structural strength scaling law for fracture of plastic-hardening metals and testing of fracture properties
  • DOI:
    10.1016/j.eml.2020.101141
  • 发表时间:
    2021-02-01
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Nguyen, Hoang T.;Donmez, A. Abdullah;Bazant, Zdenek P.
  • 通讯作者:
    Bazant, Zdenek P.
Elastic and fracture behavior of three-dimensional ply-to-ply angle interlock woven composites: Through-thickness, size effect, and multiaxial tests
  • DOI:
    10.1016/j.jcomc.2020.100098
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Weixin Li;Yao Qiao;J. Fenner;K. Warren;M. Salviato;Z. Bažant;G. Cusatis
  • 通讯作者:
    Weixin Li;Yao Qiao;J. Fenner;K. Warren;M. Salviato;Z. Bažant;G. Cusatis
What We Can and Cannot Learn from a Single Shear Test of a Very Large RC Beam
我们可以从超大 RC 梁的单次剪切试验中学到什么,不能学到什么
  • DOI:
    10.1061/jsendh.steng-12242
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Xu, Houlin;Dönmez, A. Abdullah;Nguyen, Hoang T.;Bažant, Zdeněk P.
  • 通讯作者:
    Bažant, Zdeněk P.
Crack-parallel stress effect on fracture energy of plastic hardening polycrystalline metal identified from gap test scaling
Conversion of explicit microplane model with boundaries to a constitutive subroutine for implicit finite element programs
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zdenek Bazant其他文献

Zdenek Bazant的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zdenek Bazant', 18)}}的其他基金

EAGER/Collaborative Research: New Concept of Sorption Hysteresis and Disjoining Pressure in Concrete and Other Adsorbent Microporous Solids
EAGER/合作研究:混凝土和其他吸附性微孔固体中吸附滞后和分离压力的新概念
  • 批准号:
    1153494
  • 财政年份:
    2011
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Excessive Bridge Deflections: Inverse Analysis to Identify Multi-Decade Creep Properties of Concrete
桥梁过度挠度:通过反演分析来识别混凝土的数十年蠕变特性
  • 批准号:
    1129449
  • 财政年份:
    2011
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Statistical Mechanics of Safety Factors: From Atomic Scale to Structural Scale
安全系数的统计力学:从原子尺度到结构尺度
  • 批准号:
    0556323
  • 财政年份:
    2006
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Scaling of Metal Plasticity on Approach to Nanoscale: Asymptotic Analysis
接近纳米尺度的金属塑性尺度:渐近分析
  • 批准号:
    0301445
  • 财政年份:
    2003
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Micromechanics-Based Concrete Model For Realistic Large- Scale Computations of Failure
用于实际大规模失效计算的基于微观力学的具体模型
  • 批准号:
    9732791
  • 财政年份:
    1998
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Compression Fracture and Size Effect in High-Strength Concretes
高强混凝土的压缩断裂和尺寸效应
  • 批准号:
    9713944
  • 财政年份:
    1997
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
U.S.-Czech Engineering Research on Softening Damage, Fracture and Size Effect in Concrete Structures Under Dynamic and Cyclic Loads
美捷工程研究动态和循环荷载下混凝土结构的软化损伤、断裂和尺寸效应
  • 批准号:
    9531299
  • 财政年份:
    1996
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Europe-U.S. Workshop on Fracture and Damage of Quasibrittle Materials: Experiment, Modeling and Computation
欧洲-美国
  • 批准号:
    9313122
  • 财政年份:
    1994
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Fracture of High-Performance Quasibrittle Materials: Effects of Loading Rate & Fatigue
高性能准脆性材料的断裂:加载速率的影响
  • 批准号:
    9114476
  • 财政年份:
    1992
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Internationl Symposium on Creep and Shrinkage of Concrete
混凝土徐变与收缩国际研讨会
  • 批准号:
    9215299
  • 财政年份:
    1992
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似海外基金

Data-driven prediction of fatigue crack nucleation in directionally-solidified Ni-based superalloys
定向凝固镍基高温合金疲劳裂纹形核的数据驱动预测
  • 批准号:
    24K07230
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NSF-SNSF: Crack Path Prediction and Control in Nonlinearly Viscoelastic Materials: in-silico to Experiments with Viscoelastic and Tough Hydrogels
NSF-SNSF:非线性粘弹性材料中的裂纹路径预测和控制:粘弹性和坚韧水凝胶的计算机实验
  • 批准号:
    2403592
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Combination of close mixed-planting and crack-treatment to alleviate soil waterlogging stress of soybean in upland field converted from paddy
密混混播与裂化处理相结合缓解旱田大豆土壤涝害胁迫
  • 批准号:
    23H02198
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Fundamental Understanding of Chemical Complexity on Crack Tip Plasticity of Refractory Complex Concentrated Alloys
化学复杂性对难熔复合浓缩合金裂纹尖端塑性的基本认识
  • 批准号:
    2316762
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Development of Erosion-Resistant Cr/CrN Multilayer Coating Films with High Crack Growth Retardation Effect
具有高裂纹扩展延迟效果的耐冲蚀 Cr/CrN 多层涂膜的开发
  • 批准号:
    23K03576
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational Intelligence based crack modeling and inspection under extreme temperatures variations
极端温度变化下基于计算智能的裂纹建模和检测
  • 批准号:
    23KF0240
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
A new method for estimating crack growth history using cyclic plasticity near the fatigue crack tip as a parameter
使用疲劳裂纹尖端附近的循环塑性作为参数来估计裂纹扩展历史的新方法
  • 批准号:
    23H01625
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Titanium 64 cold dwell fatigue loading - effect of stress concentrations and fatigue crack growth rates
钛 64 冷驻疲劳载荷 - 应力集中和疲劳裂纹扩展速率的影响
  • 批准号:
    2879427
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Studentship
Crack Magazine Mixed Reality Project
Crack 杂志混合现实项目
  • 批准号:
    10070406
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Collaborative R&D
Acceleration and retardation behavior of creep-fatigue crack propagation in Ni-base superalloys: Mechanisms and quantitative modelling
镍基高温合金中蠕变疲劳裂纹扩展的加速和延迟行为:机制和定量建模
  • 批准号:
    23K03600
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了