EAGER/Collaborative Research: Understanding How Enamel Prism Lattices Promote a Remarkable Combination of Fracture and Wear Resistance in Grazing Mammal Dentitions

EAGER/合作研究:了解牙釉质棱镜晶格如何促进放牧哺乳动物牙列的抗折性和耐磨性的显着组合

基本信息

  • 批准号:
    2029860
  • 负责人:
  • 金额:
    $ 5.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-01-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Fracture and wear are common issues in engineering - to the extent that the terms "worn," "fractured," and "broken" are generally synonymous with the end-of-utility of devices. In many cases, traditional materials fail to meet the complex, simultaneous performance requirements that would be ideal for next generation engineering systems. The enamel of the teeth of grazing animals represents one of nature's most remarkable biological materials -- a ceramic-like composite showing exceptional strength, toughness, wear-resistance, and ability to slow crack propagation. This is an important set of properties for a structure that is key to long-term survival in these animals - as functional teeth are required for feeding. This EArly-Concept Grant for Exploratory Research (EAGER) project will study these damage-tolerant biomaterials using a combination of evolutionary biology, biomechanics, and materials science. Results and methods from this research will be of considerable interest to investigators in many disciplines, including engineering, materials science, evolutionary biology, ecology, comparative anatomy, mammalogy, and paleontology. The research will also support the development of novel, sustainable materials with improved wear and fracture behavior. Graduate students will be involved in this truly interdisciplinary project and learn how the various fields can work together to tackle challenging questions. This research will also introduce a more effective, evolutionary approach for exploring nature for biomimetic examples.The goal of this interdisciplinary research is to specifically understand the biomechanical form, function and performance of enamel lattices, known as Modified Radial Enamel (MRE), in the grinding teeth of large herbivorous mammals. Samples will be obtained from numerous species, including equines (horses), bovids (e.g. bison and cattle) and suids (e.g. warthogs). This study will specifically focus on how these animals' teeth endure tens to hundreds of millions of high stress contact loading cycles and impacts while chewing tough and abrasive plant matter, such as grasses whose roots are laden with hard, fracture-promoting sediment inclusions. The underlying hypothesis is that MRE is an evolutionarily optimized compromise for: 1) incredible fracture resistance due to prism arrangements that localize damage and strategically control crack direction; 2) unexpected strength and toughness made possible by compliant proteinaceous prism sheaths that circumvent hydroxyapatite's inherent brittleness; and 3) wear resistance conveyed through hard, hyper-mineralized, oriented enamel prisms. The project will investigate this hypothesis through two objectives. First, the study will use an evolutionary biology approach to identify the ancestral enamel fabric character states to MRE that independently evolved in horses, bovids and warthogs. From this information, it will be possible to readily identify the specific evolutionary modifications to the enamel fabrics that enabled grinding and identify living species that can be used to undertake comparative biomechanical assessment. Second, the project will investigate the structure-property relationships of the enamel across multiple length scales by comprehensively characterizing the material properties using micro-and nano-mechanical tools, spectroscopy, and advanced electron microscopy. Teeth of grinding species with MRE will be compared with close relatives that retain the ancestral enamel fabrics, thereby revealing the salient anatomical changes that enabled the optimized combination of biomechanical properties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
断裂和磨损是工程中常见的问题--在某种程度上,术语“磨损”、“断裂”和“损坏”通常是设备使用结束的同义词。在许多情况下,传统材料无法满足复杂的、同步的性能要求,而这将是下一代工程系统的理想要求。食草动物牙齿的釉质代表了自然界最了不起的生物材料之一--一种陶瓷状复合材料,显示出非凡的强度、韧性、耐磨性和减缓裂纹扩展的能力。对于这种结构来说,这是一组重要的特性,对于这些动物的长期生存至关重要--因为功能正常的牙齿是喂养所必需的。这个早期概念探索性研究奖助金(AGER)项目将结合进化生物学、生物力学和材料科学来研究这些耐损伤生物材料。这项研究的结果和方法将引起许多学科的研究人员的极大兴趣,包括工程学、材料科学、进化生物学、生态学、比较解剖学、哺乳动物学和古生物学。这项研究还将支持开发具有改善磨损和断裂行为的新型、可持续材料。研究生将参与这个真正跨学科的项目,并学习如何在不同的领域合作解决具有挑战性的问题。这项研究还将介绍一种更有效的、进化的方法来探索自然界的仿生例子。这项跨学科研究的目标是具体了解大型食草性哺乳动物磨牙中牙釉质晶格的生物力学形式、功能和性能。样本将从许多物种获得,包括马(马)、牛类(例如野牛和牛)和猪类(例如疣猪)。这项研究将特别关注这些动物的牙齿在咀嚼坚韧和研磨的植物物质时如何承受数千万到数亿次高应力接触载荷循环和冲击,例如草的根部含有坚硬的、促进骨折的沉积物包裹体。潜在的假设是,MRE是一种经过进化优化的折衷方案,用于:1)由于棱镜布置可以定位损伤并战略性地控制裂纹方向,因此具有惊人的抗断性;2)柔顺的蛋白质棱柱护套绕过了羟基磷灰石的固有脆性,使意外的强度和韧性成为可能;以及3)通过坚硬、超矿化、定向的釉质棱镜传递的耐磨性。该项目将通过两个目标来研究这一假设。首先,这项研究将使用进化生物学的方法来识别在马、牛和疣猪中独立进化的MRE的祖先釉质纤维特征状态。根据这些信息,可以很容易地识别对釉质织物进行研磨的特定进化修改,并识别可用于进行比较生物力学评估的活物种。其次,该项目将通过使用微/纳米机械工具、光谱学和先进的电子显微镜来综合表征材料特性,来研究牙釉质在多个长度尺度上的结构-性能关系。经过MRE的磨牙物种的牙齿将与保留祖先釉质织物的近亲进行比较,从而揭示能够实现生物力学性能优化组合的显著解剖变化。该奖项反映了NSF的法定使命,并已通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brandon Krick其他文献

Brandon Krick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brandon Krick', 18)}}的其他基金

CAREER: Lamellar Lubricity - Linking Structure, Properties and Tribological Performance of Molybdenum Disulphide
职业:层状润滑性 - 连接二硫化钼的结构、特性和摩擦学性能
  • 批准号:
    2027029
  • 财政年份:
    2020
  • 资助金额:
    $ 5.4万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Understanding How Enamel Prism Lattices Promote a Remarkable Combination of Fracture and Wear Resistance in Grazing Mammal Dentitions
EAGER/合作研究:了解牙釉质棱镜晶格如何促进放牧哺乳动物牙列的抗折性和耐磨性的显着组合
  • 批准号:
    1937088
  • 财政年份:
    2019
  • 资助金额:
    $ 5.4万
  • 项目类别:
    Standard Grant
CAREER: Lamellar Lubricity - Linking Structure, Properties and Tribological Performance of Molybdenum Disulphide
职业:层状润滑性 - 连接二硫化钼的结构、特性和摩擦学性能
  • 批准号:
    1752109
  • 财政年份:
    2018
  • 资助金额:
    $ 5.4万
  • 项目类别:
    Standard Grant
GOALI: Melt Processable Polymer Nanocomposites for Low Friction and Low Wear Applications
GOALI:用于低摩擦和低磨损应用的可熔融加工聚合物纳米复合材料
  • 批准号:
    1463141
  • 财政年份:
    2015
  • 资助金额:
    $ 5.4万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 5.4万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 5.4万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 5.4万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 5.4万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 5.4万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 5.4万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 5.4万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 5.4万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 5.4万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 5.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了