RAPID: Seismo-acoustic radiation from a local earthquake aftershock sequence: how, when, and why seismic waves cross the ground-atmosphere interface

RAPID:当地地震余震序列的地震声辐射:地震波如何、何时以及为何穿过地面-大气界面

基本信息

  • 批准号:
    2029940
  • 负责人:
  • 金额:
    $ 7.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Central Idaho experienced a rare large earthquake (M6.5, depth ~14 km) on the evening of March 31, 2020 (local time). This is the second-largest ever recorded earthquake in Idaho, and because earthquakes of this magnitude are uncommon, the prospect of recording a valuable aftershock sequence motivated Boise State University researchers to set up a sensor network the following day in an area near to the epicenter. This deployment included both seismometers (to measure seismic waves underground) and infrasound sensors (to measure pressure waves in the air). This new network greatly enhances the detection capacity to the more than 283 M2.5+ aftershocks that have already been recorded by the distant regional seismic network. In addition, this new network will significantly improve the accuracy of aftershock locations, which will allow us to understand and map the fault distribution in the area and better anticipate future earthquake hazards, including potential large earthquakes that could come in the following weeks and months. In addition to tracking the seismic radiation from these aftershocks, preliminary analyses from the monitoring of infrasound, or low frequency pressure waves in the atmosphere, has revealed the production of an incredible amount of earthquake ‘sounds’. These air waves have been identified at multiple sites across the geophysical network, and early analyses indicate that they originate in the surrounding mountains as the mountains shake during the passage of the seismic waves. Past observations of mountain-generated air waves have only been studied at long distances; therefore, scientists know very little about the process of earthquake sound generation. Thus, monitoring the Stanley, Idaho aftershock sequence by expanding and maintaining the local geophysical sensor network will provide a unique and fleeting chance to study not just this region’s earthquakes, but also the transmission of seismic energy to the air (and vice versa). An improved understanding of earthquake-generated air waves may lead to new methods of monitoring seismic hazards, including secondary hazards in mountainous regions like avalanches and rockfalls, benefiting the communities exposed to such hazards and the agencies that must respond to them.Aftershocks of Central Idaho’s recent large earthquake (March 31 2020, M6.5, depth ~14 km) provide an ephemeral and unique opportunity to understand topographic seismic-acoustic energy conversion. Motivated by the rarity of events of this magnitude in Idaho, a team of researchers from Boise State University (BSU) began deploying seismometers and infrasound sensors in the region surrounding the epicenter the following day, resulting in a sensor network with excellent spatial coverage. The BSU network includes several spatially dispersed sites including both seismic and acoustic arrays (closely-spaced clusters of sensors that can identify correlated signals and determine the wave’s propagation vector), enabling it to identify backazimuths to wave sources that can be mobile, low in amplitude, continuous, or with emergent onsets. Additionally, because some infrasound sensors and seismometers are co-located, it will be possible to determine the mutual responses of seismic and acoustic instruments to acoustic and seismic waves. Early results from the temporary BSU network include aftershocks that are not detected on permanent regional stations as well as frequent earthquake-generated infrasound. Earthquake-generated infrasound is observed at multiple sites, is not associated with rock falls or avalanches, and appears to originate in nearby mountainous topography during the passage of seismic waves. Such infrasound has previously only been observed at regional distances where atmospheric propagation effects are strong, limiting the resolution of source inferences; the BSU network does not suffer from this limitation. Maintaining and expanding the BSU seismo-acoustic network during the aftershock sequence can elucidate the conversion of wave energy between the ground and atmosphere in unprecedented detail. This improved understanding of earthquake-generated infrasound will include topics like controls on infrasound generation (e.g., dependence on earthquake magnitude and depth, topographic properties, and seismic wave type), infrasound properties (e.g., radiation patterns and duration), coupling of earthquake-generated infrasound back into the ground, instrumentation sensitivities (e.g., the response of seismometers to infrasound and of infrasound sensors to ground motion), and analytical methods for locating earthquake infrasound sources. Earthquake-associated topographic infrasound could serve as a new monitoring method in earthquake-prone mountainous areas. Due to the need to distinguish earthquake-related mountain infrasound from secondary seismic hazards like avalanches or rock falls, an improved understanding of earthquake infrasound will help communities and agencies affected by such hazards.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
美国中部爱达荷州当地时间2020年3月31日晚发生罕见大地震(M6.5,深度~14公里)。这是爱达荷州有记录以来第二大地震,由于这种震级的地震并不常见,记录有价值的余震序列的前景促使博伊西州立大学的研究人员第二天在震中附近建立了一个传感器网络。 这一部署包括地震仪(用于测量地下地震波)和次声传感器(用于测量空气中的压力波)。这个新的台网大大提高了对远距离区域地震台网已经记录到的283次以上M2.5+余震的探测能力。此外,这个新的网络将大大提高余震位置的准确性,这将使我们能够了解和绘制该地区的断层分布图,并更好地预测未来的地震危险,包括未来几周和几个月可能发生的潜在大地震。除了跟踪这些余震的地震辐射外,对次声或大气中低频压力波的监测的初步分析显示,产生了令人难以置信的地震“声音”。这些空气波已经在地球物理网络的多个地点被识别出来,早期的分析表明,它们起源于周围的山脉,因为山脉在地震波通过期间震动。过去对山脉产生的空气波的观测只在远距离进行了研究;因此,科学家对地震声音产生的过程知之甚少。因此,通过扩大和维护当地的地球物理传感器网络来监测爱达荷州斯坦利的余震序列,将提供一个独特而短暂的机会,不仅可以研究该地区的地震,还可以研究地震能量向空气的传输(反之亦然)。对地震产生的空气波的进一步了解可能会导致监测地震灾害的新方法,包括山区的次生灾害,如雪崩和落石,使暴露于此类灾害的社区和必须应对这些灾害的机构受益。爱达荷州中部最近大地震的余震(2020年3月31日,M6.5,深度~14 km)提供了一个短暂而独特的机会来了解地形地震-声学能量转换。受爱达荷州这种震级的罕见事件的启发,来自博伊西州立大学(BSU)的一组研究人员第二天开始在震中周围地区部署地震仪和次声传感器,从而形成了一个具有良好空间覆盖的传感器网络。BSU网络包括几个空间分散的站点,包括地震和声学阵列(可以识别相关信号并确定波的传播矢量的密集传感器集群),使其能够识别波源的后向方位角,波源可以是移动的、振幅低、连续或具有紧急起始。此外,由于一些次声传感器和地震仪位于同一地点,因此有可能确定地震和声学仪器对声波和地震波的相互反应。临时BSU网络的早期结果包括永久性区域台站没有检测到的余震以及频繁的地震产生的次声。地震产生的次声在多个地点被观测到,与罗克瀑布或雪崩无关,似乎是在地震波通过期间起源于附近的山区地形。这种次声以前只在大气传播效应强烈的区域距离上观察到,限制了源推断的分辨率; BSU网络不受此限制。在余震序列期间维持和扩大BSU地震声学网络可以前所未有地详细阐明地面和大气之间的波能转换。这种对地震产生的次声的更好理解将包括控制次声产生等主题(例如,取决于地震震级和深度、地形特性和地震波类型),次声特性(例如,辐射模式和持续时间),地震产生的次声返回地面的耦合,仪器灵敏度(例如,地震检波器对次声的响应和次声传感器对地面运动的响应),以及定位地震次声源的分析方法。地震地形次声可以作为地震多发山区的一种新的监测方法。由于需要区分与地震有关的山区次声和次级地震灾害,如雪崩或罗克瀑布,提高对地震次声的理解将有助于受此类灾害影响的社区和机构。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mapping the Sources of Proximal Earthquake Infrasound
  • DOI:
    10.1029/2020gl091421
  • 发表时间:
    2020-11-28
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Johnson, J. B.;Mikesell, T. D.;Liberty, L. M.
  • 通讯作者:
    Liberty, L. M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Mikesell其他文献

Thomas Mikesell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Mikesell', 18)}}的其他基金

Colloborative Research: Monitoring Antarctic Ice Sheet Changes with Ambient Seismic Noise Methods
合作研究:利用环境地震噪声方法监测南极冰盖变化
  • 批准号:
    1643795
  • 财政年份:
    2017
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Standard Grant
EAR-PF: Characterizing small changes in the Earth from time-reversed multiply-scattered Rayleigh waves
EAR-PF:通过时间反转多重散射瑞利波表征地球的微小变化
  • 批准号:
    1144883
  • 财政年份:
    2013
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Fellowship Award

相似海外基金

Rapid deployment of a seismo-acoustic experiment at Mt. Etna, Italy, following a marked increase in eruptive activity
在火山喷发活动显着增加后,在意大利埃特纳火山迅速部署地震声学实验
  • 批准号:
    NE/W004771/1
  • 财政年份:
    2021
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Research Grant
CAREER: Seismo-acoustic signatures of volcanic unrest and eruption: Local, regional, and remote
职业:火山动荡和喷发的地震声学特征:本地、区域和远程
  • 批准号:
    1847736
  • 财政年份:
    2019
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Continuing Grant
Seismo-acoustic measurements of fireballs
火球的地震声学测量
  • 批准号:
    539730-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 7.36万
  • 项目类别:
    University Undergraduate Student Research Awards
Collaborative Research: Quantifying Explosive Volcanism in Alaska Using Seismo-acoustic Wavefields Recorded by USArray
合作研究:利用 USArray 记录的地震声波场量化阿拉斯加的火山爆发
  • 批准号:
    1614323
  • 财政年份:
    2016
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Standard Grant
Collaborative Research: Quantifying Explosive Volcanism in Alaska Using Seismo-acoustic Wavefields Recorded by USArray
合作研究:利用 USArray 记录的地震声波场量化阿拉斯加的火山爆发
  • 批准号:
    1614855
  • 财政年份:
    2016
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Standard Grant
Effects of zonal winds on seismo-acoustic waves
纬向风对地震声波的影响
  • 批准号:
    21540433
  • 财政年份:
    2009
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Seismo-acoustic investigation of marine gas hydrates
海洋天然气水合物的地震声学研究
  • 批准号:
    90286-2005
  • 财政年份:
    2009
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Near-Field Volcano Infrasound: Three-dimensional Seismo-Acoustic Wave Propagation
合作研究:近场火山次声波:三维地震声波传播
  • 批准号:
    0738768
  • 财政年份:
    2008
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Standard Grant
Collaborative Research: Near-Field Volcano Infrasound: Three-dimensional Seismo-Acoustic Wave Propagation
合作研究:近场火山次声波:三维地震声波传播
  • 批准号:
    0738802
  • 财政年份:
    2008
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Standard Grant
Seismo-acoustic investigation of marine gas hydrates
海洋天然气水合物的地震声学研究
  • 批准号:
    90286-2005
  • 财政年份:
    2008
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了